Search tips
Search criteria

Results 1-25 (62)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Standardised Benchmarking in the Quest for Orthologs 
Nature methods  2016;13(5):425-430.
The identification of evolutionarily related genes across different species—orthologs in particular—forms the backbone of many comparative, evolutionary, and functional genomic analyses. Achieving high accuracy in orthology inference is thus essential. Yet the true evolutionary history of genes, required to ascertain orthology, is generally unknown. Furthermore, orthologs are used for very different applications across different phyla, with different requirements in terms of the precision-recall trade-off. As a result, assessing the performance of orthology inference methods remains difficult for both users and method developers. Here, we present a community effort to establish standards in orthology benchmarking and facilitate orthology benchmarking through an automated web-based service ( Using this new service, we characterise the performance of 15 well-established orthology inference methods and resources on a battery of 20 different benchmarks. Standardised benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimal requirement for new tools and resources, and guides the development of more accurate orthology inference methods.
PMCID: PMC4827703  PMID: 27043882
2.  The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation 
The Environment Ontology (ENVO;, first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications.
We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO.
Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at
ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, ‘omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO’s growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.
PMCID: PMC5035502  PMID: 27664130
Environmental semantics; Habitat; Ecosystem; Ontology; Anthropogenic environment; Indoor environment; Sustainable development
3.  JBrowse: a dynamic web platform for genome visualization and analysis 
Genome Biology  2016;17:66.
JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page.
Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication.
JBrowse is a mature web application suitable for genome visualization and analysis.
PMCID: PMC4830012  PMID: 27072794
Genome; Browser; Bioinformatics
4.  Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome 
Science translational medicine  2014;6(252):252ra123.
Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic workflow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients’ phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics.
PMCID: PMC4512639  PMID: 25186178
5.  Anatomy of BioJS, an open source community for the life sciences 
eLife  null;4:e07009.
BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects.
PMCID: PMC4495654  PMID: 26153621
cutting edge; open source; JavaScript; community; bioinformatics; visualization; none
6.  Quest for Orthologs Entails Quest for Tree of Life: In Search of the Gene Stream 
Genome Biology and Evolution  2015;7(7):1988-1999.
Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL ( that can serve different benchmarking purposes.
PMCID: PMC4524488  PMID: 26133389
Tree of Life; species tree; gene tree support
7.  Disease insights through cross-species phenotype comparisons 
Mammalian Genome  2015;26(9-10):548-555.
New sequencing technologies have ushered in a new era for diagnosis and discovery of new causative mutations for rare diseases. However, the sheer numbers of candidate variants that require interpretation in an exome or genomic analysis are still a challenging prospect. A powerful approach is the comparison of the patient’s set of phenotypes (phenotypic profile) to known phenotypic profiles caused by mutations in orthologous genes associated with these variants. The most abundant source of relevant data for this task is available through the efforts of the Mouse Genome Informatics group and the International Mouse Phenotyping Consortium. In this review, we highlight the challenges in comparing human clinical phenotypes with mouse phenotypes and some of the solutions that have been developed by members of the Monarch Initiative. These tools allow the identification of mouse models for known disease-gene associations that may otherwise have been overlooked as well as candidate genes may be prioritized for novel associations. The culmination of these efforts is the Exomiser software package that allows clinical researchers to analyse patient exomes in the context of variant frequency and predicted pathogenicity as well the phenotypic similarity of the patient to any given candidate orthologous gene.
PMCID: PMC4602072  PMID: 26092691
8.  The Confidence Information Ontology: a step towards a standard for asserting confidence in annotations 
Biocuration has become a cornerstone for analyses in biology, and to meet needs, the amount of annotations has considerably grown in recent years. However, the reliability of these annotations varies; it has thus become necessary to be able to assess the confidence in annotations. Although several resources already provide confidence information about the annotations that they produce, a standard way of providing such information has yet to be defined. This lack of standardization undermines the propagation of knowledge across resources, as well as the credibility of results from high-throughput analyses. Seeded at a workshop during the Biocuration 2012 conference, a working group has been created to address this problem. We present here the elements that were identified as essential for assessing confidence in annotations, as well as a draft ontology—the Confidence Information Ontology—to illustrate how the problems identified could be addressed. We hope that this effort will provide a home for discussing this major issue among the biocuration community.
Tracker URL:
Ontology URL:
PMCID: PMC4425939  PMID: 25957950
9.  Finding Our Way through Phenotypes 
Deans, Andrew R. | Lewis, Suzanna E. | Huala, Eva | Anzaldo, Salvatore S. | Ashburner, Michael | Balhoff, James P. | Blackburn, David C. | Blake, Judith A. | Burleigh, J. Gordon | Chanet, Bruno | Cooper, Laurel D. | Courtot, Mélanie | Csösz, Sándor | Cui, Hong | Dahdul, Wasila | Das, Sandip | Dececchi, T. Alexander | Dettai, Agnes | Diogo, Rui | Druzinsky, Robert E. | Dumontier, Michel | Franz, Nico M. | Friedrich, Frank | Gkoutos, George V. | Haendel, Melissa | Harmon, Luke J. | Hayamizu, Terry F. | He, Yongqun | Hines, Heather M. | Ibrahim, Nizar | Jackson, Laura M. | Jaiswal, Pankaj | James-Zorn, Christina | Köhler, Sebastian | Lecointre, Guillaume | Lapp, Hilmar | Lawrence, Carolyn J. | Le Novère, Nicolas | Lundberg, John G. | Macklin, James | Mast, Austin R. | Midford, Peter E. | Mikó, István | Mungall, Christopher J. | Oellrich, Anika | Osumi-Sutherland, David | Parkinson, Helen | Ramírez, Martín J. | Richter, Stefan | Robinson, Peter N. | Ruttenberg, Alan | Schulz, Katja S. | Segerdell, Erik | Seltmann, Katja C. | Sharkey, Michael J. | Smith, Aaron D. | Smith, Barry | Specht, Chelsea D. | Squires, R. Burke | Thacker, Robert W. | Thessen, Anne | Fernandez-Triana, Jose | Vihinen, Mauno | Vize, Peter D. | Vogt, Lars | Wall, Christine E. | Walls, Ramona L. | Westerfeld, Monte | Wharton, Robert A. | Wirkner, Christian S. | Woolley, James B. | Yoder, Matthew J. | Zorn, Aaron M. | Mabee, Paula
PLoS Biology  2015;13(1):e1002033.
Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.
PMCID: PMC4285398  PMID: 25562316
11.  Deletions of chromosomal regulatory boundaries are associated with congenital disease 
Genome Biology  2014;15(9):423.
Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption.
We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects.
Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0423-1) contains supplementary material, which is available to authorized users.
PMCID: PMC4180961  PMID: 25315429
12.  Standardized description of scientific evidence using the Evidence Ontology (ECO) 
The Evidence Ontology (ECO) is a structured, controlled vocabulary for capturing evidence in biological research. ECO includes diverse terms for categorizing evidence that supports annotation assertions including experimental types, computational methods, author statements and curator inferences. Using ECO, annotation assertions can be distinguished according to the evidence they are based on such as those made by curators versus those automatically computed or those made via high-throughput data review versus single test experiments. Originally created for capturing evidence associated with Gene Ontology annotations, ECO is now used in other capacities by many additional annotation resources including UniProt, Mouse Genome Informatics, Saccharomyces Genome Database, PomBase, the Protein Information Resource and others. Information on the development and use of ECO can be found at The ontology is freely available under Creative Commons license (CC BY-SA 3.0), and can be downloaded in both Open Biological Ontologies and Web Ontology Language formats at Also at this site is a tracker for user submission of term requests and questions. ECO remains under active development in response to user-requested terms and in collaborations with other ontologies and database resources.
Database URL: Evidence Ontology Web site:
PMCID: PMC4105709  PMID: 25052702
13.  The influence of disease categories on gene candidate predictions from model organism phenotypes 
Journal of Biomedical Semantics  2014;5(Suppl 1):S4.
The molecular etiology is still to be identified for about half of the currently described Mendelian diseases in humans, thereby hindering efforts to find treatments or preventive measures. Advances, such as new sequencing technologies, have led to increasing amounts of data becoming available with which to address the problem of identifying disease genes. Therefore, automated methods are needed that reliably predict disease gene candidates based on available data. We have recently developed Exomiser as a tool for identifying causative variants from exome analysis results by filtering and prioritising using a number of criteria including the phenotype similarity between the disease and mouse mutants involving the gene candidates. Initial investigations revealed a variation in performance for different medical categories of disease, due in part to a varying contribution of the phenotype scoring component.
In this study, we further analyse the performance of our cross-species phenotype matching algorithm, and examine in more detail the reasons why disease gene filtering based on phenotype data works better for certain disease categories than others. We found that in addition to misleading phenotype alignments between species, some disease categories are still more amenable to automated predictions than others, and that this often ties in with community perceptions on how well the organism works as model.
In conclusion, our automated disease gene candidate predictions are highly dependent on the organism used for the predictions and the disease category being studied. Future work on computational disease gene prediction using phenotype data would benefit from methods that take into account the disease category and the source of model organism data.
PMCID: PMC4108905  PMID: 25093073
14.  Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon 
Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent ‘natural’ phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes.
Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued.
The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies.
The ontology release files associated with the ontology merge described in this manuscript are available at:
Current ontology release files are available always available at:
PMCID: PMC4089931  PMID: 25009735
Evolutionary biology; Morphological variation; Phenotype; Semantic integration; Bio-ontology
15.  BioJS: an open source standard for biological visualisation – its status in 2014 
F1000Research  2014;3:55.
BioJS is a community-based standard and repository of functional components to represent biological information on the web. The development of BioJS has been prompted by the growing need for bioinformatics visualisation tools to be easily shared, reused and discovered. Its modular architecture makes it easy for users to find a specific functionality without needing to know how it has been built, while components can be extended or created for implementing new functionality. The BioJS community of developers currently provides a range of functionality that is open access and freely available. A registry has been set up that categorises and provides installation instructions and testing facilities at The source code for all components is available for ready use at
PMCID: PMC4103492  PMID: 25075290
16.  Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research 
F1000Research  2014;2:30.
Phenotype analyses, e.g. investigating metabolic processes, tissue formation, or organism behavior, are an important element of most biological and medical research activities. Biomedical researchers are making increased use of ontological standards and methods to capture the results of such analyses, with one focus being the comparison and analysis of phenotype information between species.
We have generated a cross-species phenotype ontology for human, mouse and zebrafish that contains classes from the Human Phenotype Ontology, Mammalian Phenotype Ontology, and generated classes for zebrafish phenotypes. We also provide up-to-date annotation data connecting human genes to phenotype classes from the generated ontology. We have included the data generation pipeline into our continuous integration system ensuring stable and up-to-date releases.
This article describes the data generation process and is intended to help interested researchers access both the phenotype annotation data and the associated cross-species phenotype ontology. The resource described here can be used in sophisticated semantic similarity and gene set enrichment analyses for phenotype data across species. The stable releases of this resource can be obtained from
PMCID: PMC3799545  PMID: 24358873
17.  The environment ontology: contextualising biological and biomedical entities 
As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO; is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s motivation, content, structure, adoption, and governance approach. The ontology is available from - an OBO format version is also available by switching the file suffix to “obo”.
PMCID: PMC3904460  PMID: 24330602
Environment; Ecosystem; Biome; Ontology
18.  The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data 
Nucleic Acids Research  2013;42(Database issue):D966-D974.
The Human Phenotype Ontology (HPO) project, available at, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.
PMCID: PMC3965098  PMID: 24217912
19.  Web Apollo: a web-based genomic annotation editing platform 
Genome Biology  2013;14(8):R93.
Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world.
PMCID: PMC4053811  PMID: 24000942
20.  PhenoDigm: analyzing curated annotations to associate animal models with human diseases 
The ultimate goal of studying model organisms is to translate what is learned into useful knowledge about normal human biology and disease to facilitate treatment and early screening for diseases. Recent advances in genomic technologies allow for rapid generation of models with a range of targeted genotypes as well as their characterization by high-throughput phenotyping. As an abundance of phenotype data become available, only systematic analysis will facilitate valid conclusions to be drawn from these data and transferred to human diseases. Owing to the volume of data, automated methods are preferable, allowing for a reliable analysis of the data and providing evidence about possible gene–disease associations.
Here, we propose Phenotype comparisons for DIsease Genes and Models (PhenoDigm), as an automated method to provide evidence about gene–disease associations by analysing phenotype information. PhenoDigm integrates data from a variety of model organisms and, at the same time, uses several intermediate scoring methods to identify only strongly data-supported gene candidates for human genetic diseases. We show results of an automated evaluation as well as selected manually assessed examples that support the validity of PhenoDigm. Furthermore, we provide guidance on how to browse the data with PhenoDigm’s web interface and illustrate its usefulness in supporting research.
Database URL:
PMCID: PMC3649640  PMID: 23660285
21.  MouseFinder: candidate disease genes from mouse phenotype data 
Human Mutation  2012;33(5):858-866.
Mouse phenotype data represents a valuable resource for the identification of disease-associated genes, especially where the molecular basis is unknown and there is no clue to the candidate gene’s function, pathway involvement or expression pattern. However, until recently these data have not been systematically used due to difficulties in mapping between clinical features observed in humans and mouse phenotype annotations. Here, we describe a semantic approach to solve this problem and demonstrate highly significant recall of known disease-gene associations and orthology relationships. A web application (MouseFinder; has been developed to allow users to search the results of our whole-phenome comparison of human and mouse. We demonstrate its use in identifying ARTN as a strong candidate gene within the 1p34.1-p32 mapped locus for a hereditary form of ptosis.
PMCID: PMC3327758  PMID: 22331800
phenotype; candidate disease genes; model organism; mouse
22.  Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish 
Disease Models & Mechanisms  2012;6(2):358-372.
Numerous disease syndromes are associated with regions of copy number variation (CNV) in the human genome and, in most cases, the pathogenicity of the CNV is thought to be related to altered dosage of the genes contained within the affected segment. However, establishing the contribution of individual genes to the overall pathogenicity of CNV syndromes is difficult and often relies on the identification of potential candidates through manual searches of the literature and online resources. We describe here the development of a computational framework to comprehensively search phenotypic information from model organisms and single-gene human hereditary disorders, and thus speed the interpretation of the complex phenotypes of CNV disorders. There are currently more than 5000 human genes about which nothing is known phenotypically but for which detailed phenotypic information for the mouse and/or zebrafish orthologs is available. Here, we present an ontology-based approach to identify similarities between human disease manifestations and the mutational phenotypes in characterized model organism genes; this approach can therefore be used even in cases where there is little or no information about the function of the human genes. We applied this algorithm to detect candidate genes for 27 recurrent CNV disorders and identified 802 gene-phenotype associations, approximately half of which involved genes that were previously reported to be associated with individual phenotypic features and half of which were novel candidates. A total of 431 associations were made solely on the basis of model organism phenotype data. Additionally, we observed a striking, statistically significant tendency for individual disease phenotypes to be associated with multiple genes located within a single CNV region, a phenomenon that we denote as pheno-clustering. Many of the clusters also display statistically significant similarities in protein function or vicinity within the protein-protein interaction network. Our results provide a basis for understanding previously un-interpretable genotype-phenotype correlations in pathogenic CNVs and for mobilizing the large amount of model organism phenotype data to provide insights into human genetic disorders.
PMCID: PMC3597018  PMID: 23104991
23.  Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research 
F1000Research  2013;2:30.
Phenotype analyses, e.g. investigating metabolic processes, tissue formation, or organism behavior, are an important element of most biological and medical research activities. Biomedical researchers are making increased use of ontological standards and methods to capture the results of such analyses, with one focus being the comparison and analysis of phenotype information between species.
We have generated a cross-species phenotype ontology for human, mouse and zebra fish that contains zebrafish phenotypes. We also provide up-to-date annotation data connecting human genes to phenotype classes from the generated ontology. We have included the data generation pipeline into our continuous integration system ensuring stable and up-to-date releases.
This article describes the data generation process and is intended to help interested researchers access both the phenotype annotation data and the associated cross-species phenotype ontology. The resource described here can be used in sophisticated semantic similarity and gene set enrichment analyses for phenotype data across species. The stable releases of this resource can be obtained from
PMCID: PMC3799545  PMID: 24358873
24.  A knowledge based approach to matching human neurodegenerative disease and animal models 
Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal ontologies provides considerable benefit for comparing phenotypes across scales and species.
PMCID: PMC3653101  PMID: 23717278
phenotype; ontology; Neuroscience Information Framework; neurodegenerative disease; semantics
25.  Invariance (?) of Mutational Parameters for Relative Fitness Over 400 Generations of Mutation Accumulation in Caenorhabditis elegans 
G3: Genes|Genomes|Genetics  2012;2(12):1497-1503.
Evidence is accumulating that individuals in poor physiologic condition may accumulate mutational damage faster than individuals in good condition. If poor condition results from pre-existing deleterious mutations, the result is “fitness-dependent mutation rate,” which has interesting theoretical implications. Here we report a study in which 10 mutation accumulation (MA) lines of the nematode Caenorhabditis elegans that had previously accumulated mutations for 250 generations under relaxed selection were expanded into sets of “second-order” MA lines and allowed to accumulate mutations for an additional 150 generations. The 10 lines were chosen on the basis of the relative change in fitness over the first 250 generations of MA, five high-fitness lines and five low-fitness lines. On average, the mutational properties (per-generation change in mean relative fitness, mutational variance, and Bateman-Mukai estimates of genomic mutation rate and average mutational effect) of the high-fitness and low-fitness did not differ significantly, and averaged over all lines, the point estimates were extremely close to those of the first-order MA experiment after 200 generations of MA. However, several nonsignificant trends indicate that low-fitness lines may in fact be more likely to suffer mutational damage than high-fitness lines.
PMCID: PMC3516472  PMID: 23275873
Bateman-Mukai method; fitness-dependent mutation; genetic load; mutational variance

Results 1-25 (62)