Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Effects on Transcriptional Regulation and Lipid Droplet Characteristics in the Liver of Female Juvenile Pigs after Early Postnatal Feed Restriction and Refeeding Are Dependent on Birth Weight 
PLoS ONE  2013;8(11):e76705.
Epidemiological and experimental data indicate that caloric restriction in early postnatal life may improve liver lipid metabolism in low birth weight individuals.
The present study investigated transcriptional and metabolic responses to low (U) and normal (N) birth weight (d 75, T1) and postnatal feed restriction (R, 60% of controls, d 98, T2) followed by subsequent refeeding until d 131 of age (T3). Liver tissue studies were performed with a total of 42 female pigs which were born by multiparous German landrace sows. Overall, 194 genes were differentially expressed in the liver of U vs. N (T1) animals with roles in lipid metabolism. The total mean area and number of lipid droplets (LD) was about 4.6- and 3.7 times higher in U compared to N. In U, the mean LD size (µm2) was 24.9% higher. 3-week feed restriction reduced total mean area of LDs by 58.3 and 72.7% in U and N, respectively. A functional role of the affected genes in amino acid metabolism was additionally indicated. This was reflected by a 17.0% higher arginine concentration in the liver of UR animals (vs. NR). To evaluate persistency of effects, analyses were also done after refeeding period at T3. Overall, 4 and 22 genes show persistent regulation in U and N animals after 5 weeks of refeeding, respectively. These genes are involved in e.g. processes of lipid and protein metabolism and glucose homeostasis. Moreover, the recovery of total mean LD area in U and N animals back to the previous T1 level was observed. However, when compared to controls, the mean LD size was still reduced by 23.3% in UR, whereas it was increased in NR (+24.7%).
The present results suggest that short-term postnatal feed restriction period programmed juvenile U animals for an increased rate of hepatic lipolysis in later life.
PMCID: PMC3834034  PMID: 24260100
2.  A second generation radiation hybrid map to aid the assembly of the bovine genome sequence 
BMC Genomics  2006;7:283.
Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6× coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process.
An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6× bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map.
Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6× sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.
PMCID: PMC1636650  PMID: 17087818
3.  GOblet: a platform for Gene Ontology annotation of anonymous sequence data 
Nucleic Acids Research  2004;32(Web Server issue):W313-W317.
GOblet is a comprehensive web server application providing the annotation of anonymous sequence data with Gene Ontology (GO) terms. It uses a variety of different protein databases (human, murines, invertebrates, plants, sp-trembl) and their respective GO mappings. The user selects the appropriate database and alignment threshold and thereafter submits single or multiple nucleotide or protein sequences. Results are shown in different ways, e.g. as survey statistics for the main GO categories for all sequences or as detailed results for each single sequence that has been submitted. In its newest version, GOblet allows the batch submission of sequences and provides an improved display of results with the aid of Java applets. All output data, together with the Java applet, are packed to a downloadable archive for local installation and analysis. GOblet can be accessed freely at
PMCID: PMC441544  PMID: 15215401
4.  Automated Gene Ontology annotation for anonymous sequence data 
Nucleic Acids Research  2003;31(13):3712-3715.
Gene Ontology (GO) is the most widely accepted attempt to construct a unified and structured vocabulary for the description of genes and their products in any organism. Annotation by GO terms is performed in most of the current genome projects, which besides generality has the advantage of being very convenient for computer based classification methods. However, direct use of GO in small sequencing projects is not easy, especially for species not commonly represented in public databases. We present a software package (GOblet), which performs annotation based on GO terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. The paper also addresses the reliability of automated GO annotations by using a reference set of more than 6000 human proteins. The GOblet server is accessible at
PMCID: PMC168988  PMID: 12824400

Results 1-4 (4)