PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (47)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Evidence for Fumonisin Inhibition of Ceramide Synthase in Humans Consuming Maize-Based Foods and Living in High Exposure Communities in Guatemala 
Molecular nutrition & food research  2015;59(11):2209-2224.
Scope
Fumonisin (FB) occurs in maize and is an inhibitor of ceramide synthase (CerS). We determined the urinary FB1 (UFB1) and sphingoid base 1-phosphate levels in blood from women consuming maize in high and low FB exposure communities in Guatemala.
Methods and results
FB1 intake was estimated using the UFB1. Sphinganine 1-phosphate (Sa 1-P), sphingosine 1-phosphate (So 1-P), and the Sa 1-P/So 1-P ratio were determined in blood spots collected on absorbent paper at the same time as urine collection. In the first study, blood spots and urine were collected every three months (March 2011 to February 2012) from women living in low (Chimaltenango and Escuintla) and high (Jutiapa) FB exposure communities (1240 total recruits). The UFB1, Sa 1-P/So 1-P ratio, and Sa 1-P/ml in blood spots were significantly higher in the high FB1 intake community compared to the low FB1 intake communities. The results were confirmed in a follow-up study (February 2013) involving 299 women living in low (Sacatepéquez) and high (Santa Rosa and Chiquimula) FB exposure communities.
Conclusions
High levels of FB1 intake are correlated with changes in Sa 1-P and the Sa 1-P/So 1-P ratio in human blood in a manner consistent with FB1 inhibition of CerS.
doi:10.1002/mnfr.201500499
PMCID: PMC4956729  PMID: 26264677
Ceramide synthase; Fumonisin; Maize; Sphinganine 1-phosphate; Urinary fumonisin
2.  Case-Only Survival Analysis Reveals Unique Effects of Genotype, Sex, and Coronary Disease Severity on Survivorship 
PLoS ONE  2016;11(5):e0154856.
Survival bias may unduly impact genetic association with complex diseases; gene-specific survival effects may further complicate such investigations. Coronary artery disease (CAD) is a complex phenotype for which little is understood about gene-specific survival effects; yet, such information can offer insight into refining genetic associations, improving replications, and can provide candidate genes for both mortality risk and improved survivorship in CAD. Building on our previous work, the purpose of this current study was to: evaluate LSAMP SNP-specific hazards for all-cause mortality post-catheterization in a larger cohort of our CAD cases; and, perform additional replication in an independent dataset. We examined two LSAMP SNPs—rs1462845 and rs6788787—using CAD case-only Cox proportional hazards regression for additive genetic effects, censored on time-to-all-cause mortality or last follow-up among Caucasian subjects from the Catheterization Genetics Study (CATHGEN; n = 2,224) and the Intermountain Heart Collaborative Study (IMHC; n = 3,008). Only after controlling for age, sex, body mass index, histories of smoking, type 2 diabetes, hyperlipidemia and hypertension (HR = 1.11, 95%CI = 1.01–1.22, p = 0.032), rs1462845 conferred significantly increased hazards of all-cause mortality among CAD cases. Even after controlling for multiple covariates, but in only the primary cohort, rs6788787 conferred significantly improved survival (HR = 0.80, 95% CI = 0.69–0.92, p = 0.002). Post-hoc analyses further stratifying by sex and disease severity revealed replicated effects for rs1462845: even after adjusting for aforementioned covariates and coronary interventional procedures, males with severe burden of CAD had significantly amplified hazards of death with the minor variant of rs1462845 in both cohorts (HR = 1.29, 95% CI = 1.08–1.55, p = 0.00456; replication HR = 1.25, 95% CI = 1.05–1.49, p = 0.013). Kaplan-Meier curves revealed unique cohort-specific genotype effects on survival. Additional analyses demonstrated that the homozygous risk genotype (‘A/A’) fully explained the increased hazard in both cohorts. None of the post-hoc analyses in control subjects were significant for any model. This suggests that genetic effects of rs1462845 on survival are unique to CAD presence. This represents formal, replicated evidence of genetic contribution of rs1462845 to increased risk for all-cause mortality; the contribution is unique to CAD case status and specific to males with severe burden of CAD.
doi:10.1371/journal.pone.0154856
PMCID: PMC4871369  PMID: 27187494
3.  Comparison of GC-MS and GC×GC-MS in the Analysis of Human Serum Samples for Biomarker Discovery 
Journal of proteome research  2015;14(4):1810-1817.
We compared the performance of gas chromatography time-of-flight mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) for metabolite biomarker discovery. Metabolite extracts from 109 human serum samples were analyzed on both platforms with a pooled serum sample analyzed after every 9 biological samples for the purpose of quality control (QC). The experimental data derived from the pooled QC samples showed that the GC×GC-MS platform detected about three times as many peaks as the GC-MS platform at a signal-to-noise ratio SNR ≥ 50, and three times the number of metabolites were identified by mass spectrum matching with a spectral similarity score Rsim ≥ 600. Twenty-three metabolites had statistically significant abundance changes between the patient samples and the control samples in the GC-MS data set while 34 metabolites in the GC×GC-MS data set showed statistically significant differences. Among these two groups of metabolite biomarkers, nine metabolites were detected in both the GC-MS and GC×GC-MS data sets with the same direction and similar magnitude of abundance changes between the control and patient sample groups. Manual verification indicated that the difference in the number of the biomarkers discovered using these two platforms was mainly due to the limited resolution of chromatographic peaks by the GC-MS platform, which can result in severe peak overlap making subsequent spectrum deconvolution for metabolite identification and quantification difficult.
Graphical Abstract
doi:10.1021/pr5011923
PMCID: PMC4849136  PMID: 25735966
biomarker discovery; GC-MS; GC×GC-MS; metabolomics; peak capacity
4.  Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease 
PLoS ONE  2016;11(4):e0152670.
There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family, associated with PAD via an interaction with traffic air pollution exposure. These results also highlight the potential for interactions studies, particularly at the genome scale, to reveal novel biology linking environmental exposures to clinical outcomes.
doi:10.1371/journal.pone.0152670
PMCID: PMC4833382  PMID: 27082954
5.  Using circulating tumor cells to inform on prostate cancer biology and clinical utility 
Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer.
doi:10.3109/10408363.2015.1023430
PMCID: PMC4808585  PMID: 26079252
Androgen receptor; biomarker; castration resistant prostate cancer; EpCAM; liquid biopsy; microfluidic; PSA
6.  Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis 
PLoS Genetics  2015;11(11):e1005553.
Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.
Author Summary
Cardiovascular disease is a strongly heritable trait. Despite application of the latest genomic technologies, the genetic architecture of disease risk remains poorly defined, and mechanisms underlying this susceptibility are incompletely understood. In this study, we performed genome-wide mapping of heart disease-related metabolites measured in the blood as the genetic traits of interest (instead of the disease itself), in a large cohort of 3512 patients at risk of heart disease from the CATHGEN study. Our goal was to discover new cardiovascular disease genes and thereby mechanisms of disease pathogenesis by understanding the genes that regulate levels of these metabolites. These analyses identified novel genetic variants associated with metabolite levels and with cardiovascular disease itself. Importantly, by utilizing an unbiased systems-based approach integrating genetics, gene expression, epigenetics and metabolomics, we uncovered a novel pathway of heart disease pathogenesis, that of endoplasmic reticulum (ER) stress, represented by elevated levels of circulating short-chain dicarboxylacylcarnitine (SCDA) metabolites.
doi:10.1371/journal.pgen.1005553
PMCID: PMC4634848  PMID: 26540294
7.  Missing Genetic Risk in Neural Tube Defects: Can Exome Sequencing Yield an Insight? 
Background
Neural tube defects (NTD) have a strong genetic component, with up to 70% of variance in human prevalence determined by heritable factors. Although the identification of causal DNA variants by sequencing candidate genes from functionally relevant pathways and model organisms has provided some success, alternative approaches are demanded.
Methods
Next generation sequencing platforms are facilitating the production of massive amounts of sequencing data, primarily from the protein coding regions of the genome, at a faster rate and cheaper cost than has previously been possible. These platforms are permitting the identification of variants (de novo, rare, and common) that are drivers of NYTD etiology, and the cost of the approach allows for the screening of increased numbers of affected and unaffected individuals from NTD families and in simplex cases.
Conclusion
The next generation sequencing platforms represent a powerful tool in the armory of the genetics researcher to identify the causal genetic basis of NTDs.
doi:10.1002/bdra.23276
PMCID: PMC4169137  PMID: 25044326
next generation exome sequencing; de novo; rare and common variation; compound heterozygosity
8.  Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients 
Environmental Health Perspectives  2015;123(10):1007-1014.
Background
The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact of air pollution on human health.
Objective
We examined associations between roadway proximity and traffic exposure zones, as markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort of patients undergoing cardiac catheterization.
Methods
We performed a cross-sectional study of 2,124 individuals residing in North Carolina (USA). Roadway proximity was assessed via distance to primary and secondary roadways, and we used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two categories of metabolic outcomes were studied: measures associated with glucose control, and measures associated with lipid metabolism. Statistical models were adjusted for race, sex, smoking, body mass index, and socioeconomic status (SES).
Results
An interquartile-range (990 m) decrease in distance to roadways was associated with higher fasting plasma glucose (β = 2.17 mg/dL; 95% CI: –0.24, 4.59), and the association appeared to be limited to women (β = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with β = 0.14 mg/dL; 95% CI: –3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop-and-go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively associated with high-density lipoprotein cholesterol (HDL-C; β = 8.36; 95% CI: –0.15, 16.9 and β = 5.98; 95% CI: –3.96, 15.9, for TEZ 5 and 6, respectively).
Conclusion
Proxy measures of TRAP exposure were associated with intermediate metabolic traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL-C.
Citation
Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin RB, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Hauser ER, Neas LM. 2015. Association of roadway proximity with fasting plasma glucose and metabolic risk factors for cardiovascular disease in a cross-sectional study of cardiac catheterization patients. Environ Health Perspect 123:1007–1014; http://dx.doi.org/10.1289/ehp.1306980
doi:10.1289/ehp.1306980
PMCID: PMC4590740  PMID: 25807578
9.  Joint eQTL assessment of whole blood and dura mater tissue from individuals with Chiari type I malformation 
BMC Genomics  2015;16(1):11.
Background
Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been established; however, the specific genetic risk factors are not well characterized.
Results
We present an assessment of eQTLs for whole blood and dura mater tissue from individuals with CMI. A joint-tissue analysis identified 239 eQTLs in either dura or blood, with 79% of these eQTLs shared by both tissues. Several identified eQTLs were novel and these implicate genes involved in bone development (IPO8, XYLT1, and PRKAR1A), and ribosomal pathways related to marrow and bone dysfunction, as potential candidates in the development of CMI.
Conclusions
Despite strong overall heterogeneity in expression levels between blood and dura, the majority of cis-eQTLs are shared by both tissues. The power to detect shared eQTLs was improved by using an integrative statistical approach. The identified tissue-specific and shared eQTLs provide new insight into the genetic basis for CMI and related conditions.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-014-1211-8) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-014-1211-8
PMCID: PMC4342828  PMID: 25609184
eQTL analysis; Multi-tissue integration; Chiari Type I Malformation; Dura mater; Whole genome expression
10.  Genetic evaluation and application of posterior cranial fossa traits as endophenotypes for Chiari Type I Malformation 
Annals of human genetics  2013;78(1):1-12.
SUMMARY
Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the base of the skull. Although cerebellar tonsillar herniation (CTH) is hypothesized to result from an underdeveloped posterior cranial fossa (PF), patients are frequently diagnosed by the extent of CTH without cranial morphometric assessment. We recently completed the largest CMI whole genome qualitative linkage screen to date. Despite an initial lack of statistical evidence, stratified analyses using clinical criteria to reduce heterogeneity resulted in a striking increase in evidence for linkage. The present study focused on the use of cranial base morphometrics to further dissect this heterogeneity and increase power to identify disease genes. We characterized the genetic contribution for a series of PF traits and evaluated the use of heritable, disease-relevant PF traits in ordered subset analysis (OSA). Consistent with a genetic hypothesis for CMI, much of the PF morphology was found to be heritable and multiple genomic regions were strongly implicated from OSA, including regions on chromosomes 1 (LOD=3.07, p=3×10−3) and 22 (LOD=3.45, p=6×10−5) containing several candidates warranting further investigation. This study underscores the genetic heterogeneity of CMI and the utility of PF traits in CMI genetic studies.
doi:10.1111/ahg.12041
PMCID: PMC4041368  PMID: 24359474
Posterior cranial fossa; Chiari Type I Malformation; Endophenotypes; Heritability; Ordered subset analysis
11.  Mitochondrial Polymorphism A10398G and Haplogroup I Are Associated With Fuchs' Endothelial Corneal Dystrophy 
Purpose.
We investigated whether mitochondrial DNA (mtDNA) variants affect the susceptibility of Fuchs endothelial corneal dystrophy (FECD).
Methods.
Ten mtDNA variants defining European haplogroups were genotyped in a discovery dataset consisting of 530 cases and 498 controls of European descent from the Duke FECD cohort. Association tests for mtDNA markers and haplogroups were performed using logistic regression models with adjustment of age and sex. Subset analyses included controlling for additional effects of either the TCF4 SNP rs613872 or cigarette smoking. Our replication dataset was derived from the genome-wide association study (GWAS) of the FECD Genetics Consortium, where genotypes for three of 10 mtDNA markers were available. Replication analyses were performed to compare non-Duke cases to all GWAS controls (GWAS1, N = 3200), and to non-Duke controls (GWAS2, N = 3043).
Results.
The variant A10398G was significantly associated with FECD (odds ratio [OR] = 0.72; 95% confidence interval [CI] = [0.53, 0.98]; P = 0.034), and remains significant after adjusting for smoking status (min P = 0.012). This variant was replicated in GWAS1 (P = 0.019) and GWAS2 (P = 0.036). Haplogroup I was significantly associated with FECD (OR = 0.46; 95% CI = [0.22, 0.97]; P = 0.041) and remains significant after adjusting for the effect of smoking (min P = 0.008) or rs613872 (P = 0.034).
Conclusions.
The 10398G allele and Haplogroup I appear to confer significant protective effects for FECD. The effect of A10398G and Haplogroup I to FECD is likely independent of the known TCF4 variant. More data are needed to decipher the interaction between smoking and mtDNA haplogroups.
The nine European mitochondrial haplogroups were investigated for the susceptibility of Fuchs endothelial corneal dystrophy (FECD). A10398G and Haplogroup I were found significantly decreasing the risk of FECD.
doi:10.1167/iovs.13-13517
PMCID: PMC4109404  PMID: 24917144
mitochondrial haplogroup; genetic association; oxidative stress; TCF4; smoking
12.  Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis 
Human Molecular Genetics  2013;22(25):5107-5120.
Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by ‘genomic convergence’ for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2′-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease.
doi:10.1093/hmg/ddt365
PMCID: PMC3842173  PMID: 23912340
13.  The S1103Y Cardiac Sodium Channel Variant Is Associated with ICD Events in African Americans with Heart Failure and Reduced Ejection Fraction 
Background
Risk stratifying heart failure patients for primary prevention implantable cardioverter-defibrillators (ICDs) remains a challenge, especially for African Americans, who have an increased incidence of sudden cardiac death but have been underrepresented in clinical trials. We hypothesized that the S1103Y cardiac sodium channel SCN5A variant influences the propensity for ventricular arrhythmias in African American patients with heart failure and reduced ejection fraction.
Methods and Results
112 African Americans with ejection fractions (EF) <35% receiving primary prevention ICDs were identified from the Duke Electrophysiology Genetic and Genomic Studies (EPGEN) biorepository and followed for appropriate ICD therapy (either antitachycardia pacing or shock) for documented sustained ventricular tachycardia or fibrillation. The S1103Y variant was over-represented in patients receiving appropriate ICD therapy compared to subjects who did not (35% vs 13%, p=0.03). Controlling for baseline characteristics, the adjusted hazard ratio using a Cox Proportional Hazard Model for ICD therapy in Y1103 allele carriers was 4.33 (95% CI 1.60–11.73, p=<0.01). There was no difference in mortality between carriers and non-carriers.
Conclusion
This is the first report that the S1103Y variant is associated with a higher incidence of ventricular arrhythmias in African Americans with heart failure and reduced ejection fraction.
doi:10.1161/CIRCGENETICS.110.958652
PMCID: PMC3086077  PMID: 21498565
heart failure; death; sudden; genetics; ion channels; race/ethnicity
14.  Gene–smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort 
Human genetics  2013;132(12):10.1007/s00439-013-1339-7.
We performed a gene–smoking interaction analysis using families from an early-onset coronary artery disease cohort (GENECARD). This analysis was focused on validating and expanding results from previous studies implicating single nucleotide polymorphisms (SNPs) on chromosome 3 in smoking-mediated coronary artery disease. We analyzed 430 SNPs on chromosome 3 and identified 16 SNPs that showed a gene–smoking interaction at P < 0.05 using association in the presence of linkage—ordered subset analysis, a method that uses permutations of the data to empirically estimate the strength of the association signal. Seven of the 16 SNPs were in the Rho-GTPase pathway indicating a 1.87-fold enrichment for this pathway. A meta-analysis of gene–smoking interactions in three independent studies revealed that rs9289231 in KALRN had a Fisher’s combined P value of 0.0017 for the interaction with smoking. In a gene-based meta-analysis KALRN had a P value of 0.026. Finally, a pathway-based analysis of the association results using WebGestalt revealed several enriched pathways including the regulation of the actin cytoskeleton pathway as defined by the Kyoto Encyclopedia of Genes and Genomes.
doi:10.1007/s00439-013-1339-7
PMCID: PMC3835376  PMID: 23907653
15.  Genetic Association Analyses of Nitric Oxide Synthase Genes and Neural Tube Defects Vary by Phenotype 
Neural tube defects (NTDs) are caused by improper neural tube closure during the early stages of embryonic development. NTDs are hypothesized to have a complex genetic origin and numerous candidate genes have been proposed. The nitric oxide synthase 3 (NOS3) G594T polymorphism has been implicated in risk for spina bifida, and interactions between that single nucleotide polymorphism (SNP) and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism have also been observed. To evaluate other genetic variation in the NO pathway in the development of NTDs, we examined all three NOS genes: NOS1, NOS2, and NOS3. Using 3109 Caucasian samples in 745 families, we evaluated association in the overall dataset and within specific phenotypic subsets. Haplotype tagging SNPs in the NOS genes were tested for genetic association with NTD subtypes, both for main effects as well as for the presence of interactions with the MTHFR C677T polymorphism. Nominal main effect associations were found with all subtypes, across all three NOS genes, and interactions were observed between SNPs in all three NOS genes and MTHFR C677T. Unlike the previous report, the most significant associations in our dataset were with cranial subtypes and the AG genotype of rs4795067 in NOS2 (p = 0.0014) and the interaction between the rs9658490 G allele in NOS1 and MTHFR 677TT genotype (p = 0.0014). Our data extend the previous findings by implicating a role for all three NOS genes, independently and through interactions with MTHFR, in risk not only for spina bifida, but all NTD subtypes.
doi:10.1002/bdrb.21079
PMCID: PMC4169175  PMID: 24323870
NOS1; NOS2; NOS3; MTHFR; neural tube defect; NTD; anencephaly; spina bifida
16.  Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics 
BMC Medical Genomics  2014;7:39.
Background
Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population.
Methods
A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate multiple data sources were used to cluster patients into more homogeneous groups using biological and radiological data both individually and collectively.
Results
All clustering analyses resulted in the significant identification of patient classes, with the pure biological classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base morphological and clinical traits.
Conclusions
Our results implicate several strong biological candidates warranting further investigation from the dura expression analysis and also identified a blood gene expression profile corresponding to a global down-regulation in protein synthesis.
doi:10.1186/1755-8794-7-39
PMCID: PMC4082616  PMID: 24962150
Chiari Type I Malformation; Posterior fossa; Disease subtypes; Whole genome expression; Cranial base morphometrics; Clustering
17.  The Kinetics of Urinary Fumonisin B1 Excretion in Humans Consuming Maize-Based Diets 
Molecular nutrition & food research  2012;56(9):10.1002/mnfr.201200166.
Fumonisins (FB) are mycotoxins found in maize. The purpose of this study was to 1) determine the relationship between FB1, FB2 and FB3 intake and urinary excretion in humans, 2) validate a method to isolate urinary FB on C18-SPE cartridges for international shipment, and 3) test the method using samples from Guatemala. Volunteers (n=10) consumed 206 grams/day of tortillas and biscuits prepared from masa flour and a product containing maize flour. Volunteers estimated their daily urine output and samples were analyzed for FB1, FB2 and FB3 and hydrolyzed FB1. Only FB1 was detected in urine suggesting lower absorption of FB2 and FB3. Excretion was highly variable peaking soon after consumption began and decreasing rapidly after consumption stopped. Within five days after consumption ended FB1 was not detected in urine. In a study with eight volunteers, the average total urinary FB1 was 0.5% of the intake. FB1 was detected in 61% (107/177) of the samples collected in Guatemala. The results support the use of urinary FB1 to assess ongoing exposure in population based studies. However, relating the FB1 concentration in urine to dietary intake of FB by individual subjects will be complicated due to inter-individual variability and the rapidity of clearance.
doi:10.1002/mnfr.201200166
PMCID: PMC3820424  PMID: 22815244
Fumonisin; Fusarium verticillioides; Urinary fumonisin B1
18.  Interactions between Social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China 
BMC Geriatrics  2013;13:91.
Background
Existing literature indicates that ADRB2 gene is associated with health and longevity, but none of previous studies investigated associations of carrying the ADRB2 minor alleles and interactions between ADRB2 genotypes and social/behavioral factors(GxE) with health outcomes at advanced ages. This study intends to fill in this research gap.
Method
We conducted an exploratory analysis, using longitudinal survey phenotype/genotype data from 877 oldest-old aged 90+. To estimate association of GxE interactions with health outcome, adjusted for the potential correlation between genotypes and social/behavioral factors and various other potentially confounding factors, we develop and test an innovative three-step procedure which combines logistic regression and structural equation methods.
Results
Interaction between regular exercise and carrying rs1042718 minor allele is significantly and positively associated with good cognitive function; interaction between regular exercise and carrying rs1042718 or rs1042719 minor allele is significantly and positively associated with self-reported good health; and interaction between social-leisure activities and carrying rs1042719 minor allele is significantly and positively associated with self-reported good health. Carrying rs1042718 or rs1042719 minor alleles is significantly and negatively associated with negative emotion, but the ADRB2 SNPs are not significantly associated with cognitive function and self-reported health. Our structural equation analysis found that, adjusted for the confounding effects of correlation of the ADRB2 SNPs with negative emotion, interaction between negative emotion and carrying rs1042718 or rs1042719 minor allele is significantly and negatively associated with cognitive function. The positive association of regular exercise and social-leisure activities with cognitive function and self-reported health, and negative association of negative emotion with cognitive function, were much stronger among carriers of rs1042718 or rs1042719 alleles, compared to the non-carriers.
Conclusions
The results indicate significant positive associations of interactions between social/behavioral factors and the ADRB2 genotypes with health outcomes of cognitive function and self-reported health, and negative associations of carrying rs1042718 or rs1042719 minor alleles with negative emotion, at advanced ages in China. Our findings are exploratory rather than causal conclusions. This study implies that near-future health promotion programs considering individuals’ genetic profiles, with appropriate protection of privacy/confidentiality, would yield increased benefits and reduced costs to the programs and their participants.
doi:10.1186/1471-2318-13-91
PMCID: PMC3846634  PMID: 24016068
Health aging; Oldest-old; Social/behavioral factors; ADRB2 genotypes; GxE Interactions; Cognitive function; Self-reported health; Regular exercise; Social-leisure activities; Negative emotion
19.  Genome-Wide Linkage Analysis of Cardiovascular Disease Biomarkers in a Large, Multigenerational Family 
PLoS ONE  2013;8(8):e71779.
Given the importance of cardiovascular disease (CVD) to public health and the demonstrated heritability of both disease status and its related risk factors, identifying the genetic variation underlying these susceptibilities is a critical step in understanding the pathogenesis of CVD and informing prevention and treatment strategies. Although one can look for genetic variation underlying susceptibility to CVD per se, it can be difficult to define the disease phenotype for such a qualitative analysis and CVD itself represents a convergence of diverse etiologic pathways. Alternatively, one can study the genetics of intermediate traits that are known risk factors for CVD, which can be measured quantitatively. Using the latter strategy, we have measured 21 cardiovascular-related biomarkers in an extended multigenerational pedigree, the CARRIAGE family (Carolinas Region Interaction of Aging, Genes, and Environment). These biomarkers belong to inflammatory and immune, connective tissue, lipid, and hemostasis pathways. Of these, 18 met our quality control standards. Using the pedigree and biomarker data, we have estimated the broad sense heritability (H2) of each biomarker (ranging from 0.09–0.56). A genome-wide panel of 6,015 SNPs was used subsequently to map these biomarkers as quantitative traits. Four showed noteworthy evidence for linkage in multipoint analysis (LOD score ≥ 2.6): paraoxonase (chromosome 8p11, 21), the chemokine RANTES (22q13.33), matrix metalloproteinase 3 (MMP3, 17p13.3), and granulocyte colony stimulating factor (GCSF, 8q22.1). Identifying the causal variation underlying each linkage score will help to unravel the genetic architecture of these quantitative traits and, by extension, the genetic architecture of cardiovascular risk.
doi:10.1371/journal.pone.0071779
PMCID: PMC3732259  PMID: 23936524
20.  Genome-Wide Linkage Analysis of Quantitative Biomarker Traits of Osteoarthritis in a Large Multigenerational Extended Family 
Arthritis and rheumatism  2010;62(3):781-790.
Objective
The genetic contributions to the multifactorial disorder osteoarthritis (OA) have been increasingly recognized. Our goal was to use OA-related biomarkers of severity and disease burden as quantitative traits to identify genetic susceptibility loci for OA.
Methods
In a large multigenerational extended family (CARRIAGE family, n=350), we measured five OA-related biomarkers: HA (hyaluronan), COMP (cartilage oligomeric matrix protein), PIIANP (type IIA collagen N-propeptide), CPII (type II procollagen carboxy-propeptide), and C2C (type II collagen cleavage neoepitope). SNP markers (6,090) covering the whole genome were genotyped using the Illumina HumanLinkage-12 BeadChip. Variance components analysis as implemented in SOLAR was used to estimate heritabilities of the quantitative traits, and to calculate two-point and multi-point LOD scores using a polygenic model.
Results
Four of the five biomarkers showed significant heritability (p<0.01 age and sex adjusted h2r: PIIANP 0.57, HA 0.49, COMP 0.43, C2C 0.30). Fourteen of the 19 loci with multi-point LOD scores >1.5 were near or overlapped previously reported OA susceptibility loci. Four of these loci were identified by more than one biomarker. The maximum multi-point LOD scores for the heritable quantitative biomarker traits were LOD 4.3 for PIIANP (chromosome 8p23.2); LOD 3.2 for COMP (chromosome 8q11.1); LOD 2.0 for HA (chromosome 6q16.3); LOD 2.0 for C2C (chromosome 5q31.2).
Conclusions
We report the first evidence of genetic susceptibility loci identified by OA-related biomarkers in an extended family. Serum concentrations of PIIANP, HA, COMP and C2C have substantial heritable components and identified several genetic loci potentially contributing to the genetic diversity of OA.
doi:10.1002/art.27288
PMCID: PMC3684272  PMID: 20187133
whole-genome scan; osteoarthritis; biomarkers; quantitative trait; linkage; heritability
21.  Clinical, radiological, and genetic similarities between patients with Chiari Type I and Type 0 malformations 
Object
Although Chiari Type I (CM-I) and Type 0 (CM-0) malformations have been previously characterized clinically and radiologically, there have been no studies focusing on the possible genetic link between these disorders. The goal of this study was to identify families in whom CM-0 and CM-I co-occurred and to further assess the similarities between these disorders.
Methods
Families were ascertained through a proband with CM-I. Detailed family histories were obtained to identify first-degree relatives diagnosed with CM-0. Several criteria were used to exclude individuals with acquired forms of CM-I and/or syringomyelia. Individuals were excluded with syndromic, traumatic, infectious, or tumor-related syringomyelia, as well as CM-I due to a supratentorial mass, hydrocephalus, history of cervical or cranial surgery unrelated to CM-I, or development of symptoms following placement of a lumbar shunt. Medical records and MR images were used to characterize CM-I and CM-0 individuals clinically and radiologically.
Results
Five families were identified in which the CM-I proband had a first-degree relative with CM-0. Further assessment of affected individuals showed similar clinical and radiological features between CM-0 and CM-I individuals, although CM-I patients in general had more severe symptoms and skull base abnormalities than their CM-0 relatives. Overall, both groups showed improvement in symptoms and/or syrinx size following craniocervical decompression surgery.
Conclusions
There is accumulating evidence suggesting that CM-0 and CM-I may be caused by a common underlying developmental mechanism. The data in this study are consistent with this hypothesis, showing similar clinical and radiological features between CM-0 and CM-I individuals, as well as the occurrence of both disorders within families. Familial clustering of CM-0 and CM-I suggests that these disorders may share an underlying genetic basis, although additional epigenetic and/or environmental factors are likely to play an important role in the development of CM-0 versus CM-I.
doi:10.3171/2011.12.PEDS11113
PMCID: PMC3678957  PMID: 22462700
Chiari malformation; idiopathic syringomyelia; genetics
22.  Stratified Whole Genome Linkage Analysis of Chiari Type I Malformation Implicates Known Klippel-Feil Syndrome Genes as Putative Disease Candidates 
PLoS ONE  2013;8(4):e61521.
Chiari Type I Malformation (CMI) is characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. Although multiple lines of evidence support a genetic contribution to disease, no genes have been identified. We therefore conducted the largest whole genome linkage screen to date using 367 individuals from 66 families with at least two individuals presenting with nonsyndromic CMI with or without syringomyelia. Initial findings across all 66 families showed minimal evidence for linkage due to suspected genetic heterogeneity. In order to improve power to localize susceptibility genes, stratified linkage analyses were performed using clinical criteria to differentiate families based on etiologic factors. Families were stratified on the presence or absence of clinical features associated with connective tissue disorders (CTDs) since CMI and CTDs frequently co-occur and it has been proposed that CMI patients with CTDs represent a distinct class of patients with a different underlying disease mechanism. Stratified linkage analyses resulted in a marked increase in evidence of linkage to multiple genomic regions consistent with reduced genetic heterogeneity. Of particular interest were two regions (Chr8, Max LOD = 3.04; Chr12, Max LOD = 2.09) identified within the subset of “CTD-negative” families, both of which harbor growth differentiation factors (GDF6, GDF3) implicated in the development of Klippel-Feil syndrome (KFS). Interestingly, roughly 3–5% of CMI patients are diagnosed with KFS. In order to investigate the possibility that CMI and KFS are allelic, GDF3 and GDF6 were sequenced leading to the identification of a previously known KFS missense mutation and potential regulatory variants in GDF6. This study has demonstrated the value of reducing genetic heterogeneity by clinical stratification implicating several convincing biological candidates and further supporting the hypothesis that multiple, distinct mechanisms are responsible for CMI.
doi:10.1371/journal.pone.0061521
PMCID: PMC3631233  PMID: 23620759
23.  A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1 
Nature  2011;477(7364):349-353.
The human mind and body respond to stress1, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the ‘fight-or-flight’ response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term2. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders3, and epidemiological studies strongly indicate that chronic stress leads to DNA damage4,5. This stress-induced DNA damage may promote ageing6, tumorigenesis4,7, neuropsychiatric conditions8,9 and miscarriages10. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates β2-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos11. Activated β2-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of β-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right12. Here we elucidate a molecular mechanism by which β-adrenergic catecholamines, acting through both Gs-PKA and β-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, β-arrestin-1 (ARRB1), activated via β2-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1−/−) mice, which show pre served p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress1, and in the testes, in which paternal stress may affect the offspring’s genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.
doi:10.1038/nature10368
PMCID: PMC3628753  PMID: 21857681
24.  Polymorphic variants in tenascin-C (TNC) are associated with atherosclerosis and coronary artery disease 
Human genetics  2011;129(6):641-654.
Tenascin-C (TNC) is an extracellular matrix protein implicated in biological processes important for atherosclerotic plaque development and progression, including smooth muscle cell migration and proliferation. Previously, we observed differential expression of TNC in atherosclerotic aortas compared with healthy aortas. The goal of this study was to investigate whether common genetic variation within TNC is associated with risk of atherosclerosis and coronary artery disease (CAD) in three independent datasets. We genotyped 35 single nucleotide polymorphisms (SNPs), including 21 haplotype tagging SNPs, in two of these datasets: human aorta tissue samples (n = 205) and the CATHGEN cardiovascular study (n = 1,325). Eleven of these 35 SNPs were then genotyped in a third dataset, the GENECARD family study of early-onset CAD (n = 879 families). Three SNPs representing a block of linkage disequilibrium, rs3789875, rs12347433, and rs4552883, were significantly associated with athero sclerosis in multiple datasets and demonstrated consistent, but suggestive, genetic effects in all analyses. In combined analysis rs3789875 and rs12347433 were statistically significant after Bonferroni correction for 35 comparisons, p = 2 × 10−6 and 5 × 10−6, respectively. The SNP rs12347433 is a synonymous coding SNP and may be biologically relevant to the mechanism by which tenascin-C influences the pathophysiology of CAD and atherosclerosis. This is the first report of genetic association between polymorphisms in TNC and atherosclerosis or CAD.
doi:10.1007/s00439-011-0959-z
PMCID: PMC3576662  PMID: 21298289
25.  Genetic screen of African Americans with Fuchs endothelial corneal dystrophy 
Molecular Vision  2013;19:2508-2516.
Purpose
Fuchs endothelial corneal dystrophy (FECD) is a genetically heterogeneous disorder that has been primarily studied in patients of European or Asian ancestry. Given the sparse literature on African Americans with FECD, we sought to characterize the genetic variation in three known FECD candidate genes in African American patients with FECD.
Methods
Over an 8-year period, we enrolled 47 African American probands with FECD. All participants were clinically examined with slit-lamp biomicroscopy, and when corneal tissue specimens were available, histopathologic confirmation of the clinical diagnosis was obtained. The coding regions of known FECD susceptibility genes collagen, type VIII, alpha 2 (COL8A2); solute carrier family 4, sodium borate transporter, member 11 (SLC4A11); and zinc finger E-box binding homeobox 1 (ZEB1 [also known as TCF8]) were Sanger sequenced in the 47 probands using DNA isolated from blood samples.
Results
Twenty-two coding variants were detected across the COL8A2, SLC4A11, and ZEB1 genes; six were nonsynonymous variants. Three novel coding variants were detected: a synonymous variant each in COL8A2 and SLC4A11 and one nonsynonymous variant in ZEB1 (p.P559S), which is predicted to be benign and tolerated, thus making its physiologic consequence uncertain.
Conclusions
Variation in the COL8A2, SLC4A11, and ZEB1 genes is present in only a small fraction of our African American cases and as such does not appear to significantly contribute to the genetic risk of FECD in African Americans. This observation is on par with findings from previous sequencing studies involving European or Asian ancestry patients with FECD.
PMCID: PMC3859630  PMID: 24348007

Results 1-25 (47)