Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Clone Mapper: An Online Suite of Tools for RNAi Experiments in Caenorhabditis elegans 
G3: Genes|Genomes|Genetics  2014;4(11):2137-2145.
RNA interference (RNAi), mediated by the introduction of a specific double-stranded RNA, is a powerful method to investigate gene function. It is widely used in the Caenorhabditis elegans research community. An expanding number of laboratories conduct genome-wide RNAi screens, using standard libraries of bacterial clones each designed to produce a specific double-stranded RNA. Proper interpretation of results from RNAi experiments requires a series of analytical steps, from the verification of the identity of bacterial clones, to the identification of the clones’ potential targets. Despite the popularity of the technique, no user-friendly set of tools allowing these steps to be carried out accurately, automatically, and at a large scale, is currently available. We report here the design and production of Clone Mapper, an online suite of tools specifically adapted to the analysis pipeline typical for RNAi experiments with C. elegans. We show that Clone Mapper overcomes the limitations of existing techniques and provide examples illustrating its potential for the identification of biologically relevant genes. The Clone Mapper tools are freely available via
PMCID: PMC4232539  PMID: 25187039
database; algorithm; gene discovery; functional genomics; MPscan
2.  Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen 
Genome Biology and Evolution  2014;6(8):2096-2110.
Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents.
PMCID: PMC4231636  PMID: 25070509
Serratia marcescens; genome plasticity; virulence; multidrug resistance
3.  A UPR-independent infection-specific role for a BiP/GRP78 protein in the control of antimicrobial peptide expression in C. elegans epidermis 
Virulence  2012;3(3):299-308.
The nematode C. elegans responds to infection by the fungus Drechmeria coniospora with a rapid increase in the expression of antimicrobial peptide genes. To investigate further the molecular basis of this innate immune response, we took a two-dimensional difference in-gel electrophoresis (2D-DIGE) approach to characterize the changes in host protein that accompany infection. We identified a total of 68 proteins from differentially represented spots and their corresponding genes. Through class testing, we identified functional categories that were enriched in our proteomic data set. One of these was “protein processing in endoplasmic reticulum,” pointing to a potential link between innate immunity and endoplasmic reticulum function. This class included HSP-3, a chaperone of the BiP/GRP78 family known to act coordinately in the endoplasmic reticulum with its paralog HSP-4 to regulate the unfolded protein response (UPR). Other studies have shown that infection of C. elegans can provoke a UPR. We observed, however, that in adult C. elegans infection with D. coniospora did not induce a UPR, and conversely, triggering a UPR did not lead to an increase in expression of the well-characterized antimicrobial peptide gene nlp-29. On the other hand, we demonstrated a specific role for hsp-3 in the regulation of nlp-29 after infection that is not shared with hsp-4. Epistasis analysis allowed us to place hsp-3 genetically between the Tribbles-like kinase gene nipi-3 and the protein kinase C delta gene tpa-1. The precise function of hsp-3 has yet to be determined, but these results uncover a hitherto unsuspected link between a BiP/GRP78 family protein and innate immune signaling.
PMCID: PMC3442842  PMID: 22546897
Drechmeria coniospora; MAPK; gene regulation; proteomics; signal transduction
4.  Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses 
PLoS ONE  2014;9(3):e92552.
Metazoan transcription factors control distinct networks of genes in specific tissues, yet understanding how these networks are integrated into physiology, development, and homeostasis remains challenging. Inactivation of the nuclear hormone receptor nhr-25 ameliorates developmental and metabolic phenotypes associated with loss of function of an acyl-CoA synthetase gene, acs-3. ACS-3 activity prevents aberrantly high NHR-25 activity. Here, we investigated this relationship further by examining gene expression patterns following acs-3 and nhr-25 inactivation. Unexpectedly, we found that the acs-3 mutation or nhr-25 RNAi resulted in similar transcriptomes with enrichment in innate immunity and stress response gene expression. Mutants of either gene exhibited distinct sensitivities to pathogens and environmental stresses. Only nhr-25 was required for wild-type levels of resistance to the bacterial pathogen P. aeruginosa and only acs-3 was required for wild-type levels of resistance to osmotic stress and the oxidative stress generator, juglone. Inactivation of either acs-3 or nhr-25 compromised lifespan and resistance to the fungal pathogen D. coniospora. Double mutants exhibited more severe defects in the lifespan and P. aeruginosa assays, but were similar to the single mutants in other assays. Finally, acs-3 mutants displayed defects in their epidermal surface barrier, potentially accounting for the observed sensitivities. Together, these data indicate that inactivation of either acs-3 or nhr-25 causes stress sensitivity and increased expression of innate immunity/stress genes, most likely by different mechanisms. Elevated expression of these immune/stress genes appears to abrogate the transcriptional signatures relevant to metabolism and development.
PMCID: PMC3961378  PMID: 24651852
5.  The fatty acid synthase fasn-1 acts upstream of WNK and Ste20/GCK-VI kinases to modulate antimicrobial peptide expression in C. elegans epidermis 
Virulence  2010;1(3):113-122.
An important part of the innate immune response of the nematode C. elegans to fungal infection is the rapid induction of antimicrobial peptide gene expression. One of these genes, nlp-29, is expressed at a low level in adults under normal conditions. Its expression is upregulated in the epidermis by infection with Drechmeria coniospora, but also by physical injury and by osmotic stress. For infection and wounding, the induction is dependent on a p38 MAP kinase cascade, but for osmotic stress, this pathway is not required. To characterize further the pathways that control the expression of nlp-29, we carried out a genetic screen for negative regulatory genes. We isolated a number of Peni (peptide expression no infection) mutants and cloned one. It corresponds to fasn-1, the nematode ortholog of vertebrate fatty acid synthase. We show here that a pathway involving fatty acid synthesis and the evolutionary conserved wnk-1 and gck-3/Ste20/GCK-VI kinases modulates nlp-29 expression in the C. elegans epidermis, independently of p38 MAPK signaling. The control of the antimicrobial peptide gene nlp-29 thus links different physiological processes, including fatty acid metabolism, osmoregulation, maintenance of epidermal integrity and the innate immune response to infection.
PMCID: PMC3073241  PMID: 21178429
innate immunity; homeostasis; signalling; model organism; genetics
6.  The Pseudokinase NIPI-4 Is a Novel Regulator of Antimicrobial Peptide Gene Expression 
PLoS ONE  2012;7(3):e33887.
Hosts have developed diverse mechanisms to counter the pathogens they face in their natural environment. Throughout the plant and animal kingdoms, the up-regulation of antimicrobial peptides is a common response to infection. In C. elegans, infection with the natural pathogen Drechmeria coniospora leads to rapid induction of antimicrobial peptide gene expression in the epidermis. Through a large genetic screen we have isolated many new mutants that are incapable of upregulating the antimicrobial peptide nlp-29 in response to infection (i.e. with a Nipi or ‘no induction of peptide after infection’ phenotype). More than half of the newly isolated Nipi mutants do not correspond to genes previously associated with the regulation of antimicrobial peptides. One of these, nipi-4, encodes a member of a nematode-specific kinase family. NIPI-4 is predicted to be catalytically inactive, thus to be a pseudokinase. It acts in the epidermis downstream of the PKC∂ TPA-1, as a positive regulator of nlp antimicrobial peptide gene expression after infection. It also controls the constitutive expression of antimicrobial peptide genes of the cnc family that are targets of TGFß regulation. Our results open the way for a more detailed understanding of how host defense pathways can be molded by environmental pathogens.
PMCID: PMC3309975  PMID: 22470487
7.  A Genome-Wide Collection of Mos1 Transposon Insertion Mutants for the C. elegans Research Community 
PLoS ONE  2012;7(2):e30482.
Methods that use homologous recombination to engineer the genome of C. elegans commonly use strains carrying specific insertions of the heterologous transposon Mos1. A large collection of known Mos1 insertion alleles would therefore be of general interest to the C. elegans research community. We describe here the optimization of a semi-automated methodology for the construction of a substantial collection of Mos1 insertion mutant strains. At peak production, more than 5,000 strains were generated per month. These strains were then subject to molecular analysis, and more than 13,300 Mos1 insertions characterized. In addition to targeting directly more than 4,700 genes, these alleles represent the potential starting point for the engineered deletion of essentially all C. elegans genes and the modification of more than 40% of them. This collection of mutants, generated under the auspices of the European NEMAGENETAG consortium, is publicly available and represents an important research resource.
PMCID: PMC3275553  PMID: 22347378
9.  A Comprehensive Analysis of Gene Expression Changes Provoked by Bacterial and Fungal Infection in C. elegans 
PLoS ONE  2011;6(5):e19055.
While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens) and two fungal pathogens (Drechmeria coniospora and Harposporium sp.). We developed a flexible tool, the WormBase Converter (available at, to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.
PMCID: PMC3094335  PMID: 21602919
10.  C. elegans: model host and tool for antimicrobial drug discovery 
Disease Models & Mechanisms  2011;4(3):300-304.
For almost four decades, the nematode Caenorhabditis elegans has been of great value in many fields of biological research. It is now used extensively in studies of microbial pathogenesis and innate immunity. The worm lacks an adaptive immune system and relies solely on its innate immune defences to cope with pathogen attack. Infectious microbes, many of which are of clinical interest, trigger specific mechanisms of innate immunity, and provoke the expression of antifungal or antibacterial polypeptides. In this review, we highlight some of these families of antimicrobial peptides (AMPs) and proteins that are candidates for the development of novel antibiotics. In addition, we describe how systems of C. elegans infection provide an increasing number of possibilities for large-scale in vivo screens for the discovery of new antimicrobial drugs. These systems open promising perspectives for innovative human therapies.
PMCID: PMC3097103  PMID: 21504910
11.  SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans 
PLoS ONE  2009;4(11):e7792.
Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans.
PMCID: PMC2773845  PMID: 19924247
12.  Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence 
PLoS Pathogens  2009;5(8):e1000540.
Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity.
Author Summary
The increase in hospital acquired and multi-drug resistant bacterial infections calls for an urgent development of new antimicrobials. As such, the identification and characterization of novel molecular targets involved in bacterial virulence has become a common goal for researchers. The use of non-mammalian hosts, such as the nematode Caenorhabditis elegans, is useful to accelerate this process. In our study, we developed a high-throughput screening method, which further facilitates the use of C. elegans, and allows the rapid screening of a large collection of bacterial mutants at the genomic scale. We have used Pseudomonas aeruginosa, a potent opportunistic pathogen, to perform this study. The screening of more than 2,000 mutant strains allowed the characterization of a mutant affected in the cheB2 gene. Importantly, this mutant was shown to be impaired in a mouse model of infection, supporting that our new screen is a good model to identify virulence genes relevant for infection in mammals. The cheB2 gene encodes a component of a chemotaxis pathway, which is likely involved in the perception of stimuli during the infection process, and allows an appropriate adaptive response for a successful infection. Our method could be applied to other bacterial pathogens and will help researchers discover candidate genes leading to the design of novel antimicrobials.
PMCID: PMC2714965  PMID: 19662168
13.  Distinct innate immune responses to infection and wounding in the C. elegans epidermis 
Current biology : CB  2008;18(7):481-489.
In many animals, the epidermis is in permanent contact with the environment and represents a first line of defense against pathogens and injury. Infection of the nematode Caenorhabditis elegans by the natural fungal pathogen Drechmeria coniospora induces the expression in the epidermis of antimicrobial peptide (AMP) genes such as nlp-29. Here, we tested the hypothesis that injury might also alter AMP gene expression and sought to characterize the mechanisms that regulate the innate immune response.
Injury induces a wound-healing response in C. elegans that includes induction of nlp-29 in the epidermis. We find that a conserved p38-MAP kinase cascade is required in the epidermis for the response to both infection and wounding. Through a forward genetic screen, we isolated mutants that failed to induce nlp-29 expression after D. coniospora infection. We identify a kinase, NIPI-3, related to human Tribbles homolog 1, that is likely to act upstream of the MAP2K SEK-1. We find NIPI-3 is required only for nlp-29 induction following infection and not following wounding.
Our results show that the C. elegans epidermis actively responds to wounding and infection via distinct pathways that converge on a conserved signaling cassette that controls the expression of the AMP gene nlp-29. A comparison between these results and MAP kinase signaling in yeast gives insights into the possible origin and evolution of innate immunity.
PMCID: PMC2394561  PMID: 18394898
14.  Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides 
PLoS Pathogens  2008;4(7):e1000105.
Encounters with pathogens provoke changes in gene transcription that are an integral part of host innate immune responses. In recent years, studies with invertebrate model organisms have given insights into the origin, function, and evolution of innate immunity. Here, we use genome-wide transcriptome analysis to characterize the consequence of natural fungal infection in Caenorhabditis elegans. We identify several families of genes encoding putative antimicrobial peptides (AMPs) and proteins that are transcriptionally up-regulated upon infection. Many are located in small genomic clusters. We focus on the nlp-29 cluster of six AMP genes and show that it enhances pathogen resistance in vivo. The same cluster has a different structure in two other Caenorhabditis species. A phylogenetic analysis indicates that the evolutionary diversification of this cluster, especially in cases of intra-genomic gene duplications, is driven by natural selection. We further show that upon osmotic stress, two genes of the nlp-29 cluster are strongly induced. In contrast to fungus-induced nlp expression, this response is independent of the p38 MAP kinase cascade. At the same time, both involve the epidermal GATA factor ELT-3. Our results suggest that selective pressure from pathogens influences intra-genomic diversification of AMPs and reveal an unexpected complexity in AMP regulation as part of the invertebrate innate immune response.
Author Summary
We are interested in how exactly the nematode Caenorhabditi elegans, widely used in biological research, defends itself against fungal infection. Like most animals, this worm responds to infection by switching on defense genes. We used DNA chips to measure the levels of all the worm's 20,000 genes and discovered new inducible defense genes. Many of them encode small proteins or peptides that can probably kill microbes. By looking in other nematode species, we saw that these antimicrobial peptide genes are evolving rapidly. This means that they could be important for the worms' survival in their natural environment. We also looked at how some of these genes are regulated and uncovered a sophisticated control mechanism involving a series of proteins called kinases that relay signals within cells. The genes we looked at are active in the worm's skin. Some of the antimicrobial peptide genes that we looked at are also switched on in the skin by high salt, but in this case, the regulation doesn't involve the same cascade of kinases. The responses to both infection and high salt do, however, require the same transcription factor (the protein that actually switches genes on), in this case called a GATA factor.
PMCID: PMC2453101  PMID: 18636113
15.  A Model of Bacterial Intestinal Infections in Drosophila melanogaster 
PLoS Pathogens  2007;3(11):e173.
Serratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S. marcescens resistance to the Drosophila immune deficiency (imd)-mediated humoral response requires the bacterial lipopolysaccharide O-antigen. If ingested by Drosophila, bacteria cross the gut and penetrate the body cavity. During this passage, the bacteria can be observed within the cells of the intestinal epithelium. In such an oral infection model, the flies succumb to infection only after 6 days. We demonstrate that two complementary host defense mechanisms act together against such food-borne infection: an antimicrobial response in the intestine that is regulated by the imd pathway and phagocytosis by hemocytes of bacteria that have escaped into the hemolymph. Interestingly, bacteria present in the hemolymph elicit a systemic immune response only when phagocytosis is blocked. Our observations support a model wherein peptidoglycan fragments released during bacterial growth activate the imd pathway and do not back a proposed role for phagocytosis in the immune activation of the fat body. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm for deciphering intestinal pathogenesis.
Author Summary
The gut is a crucial interface of the host with its environment and represents an important portal of entry for pathogens. Here, we have developed a novel model of intestinal infections in the genetic model organism Drosophila melanogaster using the potent entomopathogen bacterium Serratia marcescens. In contrast to other enteropathogens, this bacterium traverses the intestinal epithelium despite a local immune response and gains access to the body cavity of the fruit fly. The cellular arm of innate immunity controls its proliferation in the hemocoele. Interestingly, ingested bacteria that have moved to the hemolymph compartment are not detected by the humoral immune system of the fly unless phagocytosis is blocked. In a septic injury model, S. marcescens kills its host in a day. In contrast, the flies succumb slowly to an intestinal infection, even though the bacterium is present in the hemolymph. We surmise that the bacterium expresses distinct virulence programs according to the mode of infection. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm to decipher intestinal pathogenesis.
PMCID: PMC2094306  PMID: 18039029
16.  Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection 
Genome Biology  2007;8(9):R194.
Microarray analysis of the transcriptional response of C. elegans to four bacterial pathogens revealed that different infections trigger responses, some of which are common to all four pathogens, such as necrotic cell death, which has been associated with infection in humans.
There are striking similarities between the innate immune systems of invertebrates and vertebrates. Caenorhabditis elegans is increasingly used as a model for the study of innate immunity. Evidence is accumulating that C. elegans mounts distinct responses to different pathogens, but the true extent of this specificity is unclear. Here, we employ direct comparative genomic analyses to explore the nature of the host immune response.
Using whole-genome microarrays representing 20,334 genes, we analyzed the transcriptional response of C. elegans to four bacterial pathogens. Different bacteria provoke pathogen-specific signatures within the host, involving differential regulation of 3.5-5% of all genes. These include genes that encode potential pathogen-recognition and antimicrobial proteins. Additionally, variance analysis revealed a robust signature shared by the pathogens, involving 22 genes associated with proteolysis, cell death and stress responses. The expression of these genes, including those that mediate necrosis, is similarly altered following infection with three bacterial pathogens. We show that necrosis aggravates pathogenesis and accelerates the death of the host.
Our results suggest that in C. elegans, different infections trigger both specific responses and responses shared by several pathogens, involving immune defense genes. The response shared by pathogens involves necrotic cell death, which has been associated with infection in humans. Our results are the first indication that necrosis is important for disease susceptibility in C. elegans. This opens the way for detailed study of the means by which certain bacteria exploit conserved elements of host cell-death machinery to increase their effective virulence.
PMCID: PMC2375032  PMID: 17875205
17.  A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans 
Nucleic Acids Research  2006;35(2):e11.
The generation of a large collection of defined transposon insertion mutants is of general interest to the Caenorhabditis elegans research community and has been supported by the European Union. We describe here a semi-automated high-throughput method for mutant production and screening, using the heterologous transposon Mos1. The procedure allows routine culture of several thousand independent nematode strains in parallel for multiple generations before stereotyped molecular analyses. Using this method, we have already generated >17 500 individual strains carrying Mos1 insertions. It could be easily adapted to forward and reverse genetic screens and may influence researchers faced with making a choice of model organism.
PMCID: PMC1903375  PMID: 17164286
18.  Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens 
Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens.
Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species.
The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts.
PMCID: PMC538262  PMID: 15555070
19.  Diverse Bacteria Are Pathogens of Caenorhabditis elegans  
Infection and Immunity  2002;70(8):4705-4707.
Practically and ethically attractive as model systems, invertebrate organisms are increasingly recognized as relevant for the study of bacterial pathogenesis. We show here that the nematode Caenorhabditis elegans is susceptible to a surprisingly broad range of bacteria and may constitute a useful model for the study of both pathogens and symbionts.
PMCID: PMC128124  PMID: 12117988

Results 1-19 (19)