PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  708 common and 2,010 rare DISC1 locus variants identified in 1,542 subjects: analysis for association with psychiatric disorder and cognitive traits 
Molecular psychiatry  2013;19(6):668-675.
A balanced t(1;11) translocation which transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2,718 validated single nucleotide polymorphisms of which 2,010 have a minor allele frequency of less than 1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and recurrent major depressive disorder (P=0.026, unadjusted P=6.3 × 10−5, OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
doi:10.1038/mp.2013.68
PMCID: PMC4031635  PMID: 23732877
3.  SuRFing the genomics wave: an R package for prioritising SNPs by functionality 
Genome Medicine  2014;6(10):79.
Identifying functional non-coding variants is one of the greatest unmet challenges in genetics. To help address this, we introduce an R package, SuRFR, which integrates functional annotation and prior biological knowledge to prioritise candidate functional variants. SuRFR is publicly available, modular, flexible, fast, and simple to use. We demonstrate that SuRFR performs with high sensitivity and specificity and provide a widely applicable and scalable benchmarking dataset for model training and validation.
Website: http://www.cgem.ed.ac.uk/resources/
Electronic supplementary material
The online version of this article (doi:10.1186/s13073-014-0079-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13073-014-0079-1
PMCID: PMC4224693  PMID: 25400697
4.  Impact of a microRNA MIR137 Susceptibility Variant on Brain Function in People at High Genetic Risk of Schizophrenia or Bipolar Disorder 
Neuropsychopharmacology  2012;37(12):2720-2729.
A recent ‘mega-analysis' combining genome-wide association study data from over 40 000 individuals identified novel genetic loci associated with schizophrenia (SCZ) at genome-wide significance level. The strongest finding was a locus within an intron of a putative primary transcript for microRNA MIR137. In the current study, we examine the impact of variation at this locus (rs1625579, G/T; where T is the common and presumed risk allele) on brain activation during a sentence completion task that differentiates individuals with SCZ, bipolar disorder (BD), and their relatives from controls. We examined three groups of individuals performing a sentence completion paradigm: (i) individuals at high genetic risk of SCZ (n=44), (ii) individuals at high genetic risk of BD (n=90), and (iii) healthy controls (n=81) in order to test the hypothesis that genotype at rs1625579 would influence brain activation. Genotype groups were assigned as ‘RISK−' for GT and GG individuals, and ‘RISK+' for TT homozygotes. The main effect of genotype was significantly greater activation in the RISK− individuals in the posterior right medial frontal gyrus, BA 6. There was also a significant genotype*group interaction in the left amygdala and left pre/postcentral gyrus. This was due to differences between the controls (where individuals with the RISK− genotype showed greater activation than RISK+ subjects) and the SCZ high-risk group, where the opposite genotype effect was seen. These results suggest that the newly identified SCZ locus may influence brain activation in a manner that is partly dependent on the presence of existing genetic susceptibility for SCZ.
doi:10.1038/npp.2012.137
PMCID: PMC3473338  PMID: 22850735
schizophrenia; bipolar disorder; fMRI; MIR137; biological psychiatry; imaging; clinical or preclinical; MIR137; neurogenetics; schizophrenia/antipsychotics
5.  Genetic variation in Hyperpolarization-activated cyclic nucleotide-gated channels and its relationship with neuroticism, cognition and risk of depression 
Frontiers in Genetics  2012;3:116.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by four genes (HCN1–4) and, through activation by cyclic AMP (cAMP), represent a point of convergence for several psychosis risk genes. On the basis of positive preliminary data, we sought to test whether genetic variation in HCN1–4 conferred risk of depression or cognitive impairment in the Generation Scotland: Scottish Family Health Study. HCN1, HCN2, HCN3, and HCN4 were genotyped for 43 haplotype-tagging SNPs and tested for association with DSM-IV depression, neuroticism, and a battery of cognitive tests assessing cognitive ability, memory, verbal fluency, and psychomotor performance. No association was found between any HCN channel gene SNP and risk of depression, neuroticism, or on any cognitive measure. The current study does not support a genetic role for HCN channels in conferring risk of depression or cognitive impairment in individuals from the Scottish population.
doi:10.3389/fgene.2012.00116
PMCID: PMC3387669  PMID: 22783272
stress; depression; HCN channel; genetics; association; cognition; neuroticism
6.  A case-control association study and family-based expression analysis of the bipolar disorder candidate gene PI4K2B 
Journal of Psychiatric Research  2009;43(16-3):1272-1277.
Bipolar disorder, schizophrenia and recurrent major depression are complex psychiatric illnesses with a substantial, yet unknown genetic component. Linkage of bipolar disorder and recurrent major depression with markers on chromosome 4p15–p16 has been identified in a large Scottish family and three smaller families. Analysis of haplotypes in the four chromosome 4p-linked families, identified two regions, each shared by three of the four families, which are also supported by a case-control association study. The candidate gene phosphatidylinositol 4-kinase type-II beta (PI4K2B) lies within one of these regions. PI4K2B is a strong functional candidate as it is a member of the phosphatidylinositol pathway, which is targeted by lithium for therapeutic effect in bipolar disorder. Two approaches were undertaken to test the PI4K2B candidate gene as a susceptibility factor for psychiatric illness. First, a case-control association study, using tagging SNPs from the PI4K2B genomic region, in bipolar disorder (n = 368), schizophrenia (n = 386) and controls (n = 458) showed association with a two-marker haplotype in schizophrenia but not bipolar disorder (rs10939038 and rs17408391, global P = 0.005, permuted global P = 0.039). Second, expression studies at the allele-specific mRNA and protein level using lymphoblastoid cell lines from members of the large Scottish family, which showed linkage to 4p15–p16 in bipolar disorder and recurrent major depression, showed no difference in expression differences between affected and non-affected family members. There is no evidence to suggest that PI4K2B is contributing to bipolar disorder in this family but a role for this gene in schizophrenia has not been excluded.
doi:10.1016/j.jpsychires.2009.05.004
PMCID: PMC2789249  PMID: 19539307
Bipolar disorder; Chromosome 4p15; PI4K2B; Phosphatidylinositol pathway; Association; Expression studies
7.  The DNA sequence of the human X chromosome 
Ross, Mark T. | Grafham, Darren V. | Coffey, Alison J. | Scherer, Steven | McLay, Kirsten | Muzny, Donna | Platzer, Matthias | Howell, Gareth R. | Burrows, Christine | Bird, Christine P. | Frankish, Adam | Lovell, Frances L. | Howe, Kevin L. | Ashurst, Jennifer L. | Fulton, Robert S. | Sudbrak, Ralf | Wen, Gaiping | Jones, Matthew C. | Hurles, Matthew E. | Andrews, T. Daniel | Scott, Carol E. | Searle, Stephen | Ramser, Juliane | Whittaker, Adam | Deadman, Rebecca | Carter, Nigel P. | Hunt, Sarah E. | Chen, Rui | Cree, Andrew | Gunaratne, Preethi | Havlak, Paul | Hodgson, Anne | Metzker, Michael L. | Richards, Stephen | Scott, Graham | Steffen, David | Sodergren, Erica | Wheeler, David A. | Worley, Kim C. | Ainscough, Rachael | Ambrose, Kerrie D. | Ansari-Lari, M. Ali | Aradhya, Swaroop | Ashwell, Robert I. S. | Babbage, Anne K. | Bagguley, Claire L. | Ballabio, Andrea | Banerjee, Ruby | Barker, Gary E. | Barlow, Karen F. | Barrett, Ian P. | Bates, Karen N. | Beare, David M. | Beasley, Helen | Beasley, Oliver | Beck, Alfred | Bethel, Graeme | Blechschmidt, Karin | Brady, Nicola | Bray-Allen, Sarah | Bridgeman, Anne M. | Brown, Andrew J. | Brown, Mary J. | Bonnin, David | Bruford, Elspeth A. | Buhay, Christian | Burch, Paula | Burford, Deborah | Burgess, Joanne | Burrill, Wayne | Burton, John | Bye, Jackie M. | Carder, Carol | Carrel, Laura | Chako, Joseph | Chapman, Joanne C. | Chavez, Dean | Chen, Ellson | Chen, Guan | Chen, Yuan | Chen, Zhijian | Chinault, Craig | Ciccodicola, Alfredo | Clark, Sue Y. | Clarke, Graham | Clee, Chris M. | Clegg, Sheila | Clerc-Blankenburg, Kerstin | Clifford, Karen | Cobley, Vicky | Cole, Charlotte G. | Conquer, Jen S. | Corby, Nicole | Connor, Richard E. | David, Robert | Davies, Joy | Davis, Clay | Davis, John | Delgado, Oliver | DeShazo, Denise | Dhami, Pawandeep | Ding, Yan | Dinh, Huyen | Dodsworth, Steve | Draper, Heather | Dugan-Rocha, Shannon | Dunham, Andrew | Dunn, Matthew | Durbin, K. James | Dutta, Ireena | Eades, Tamsin | Ellwood, Matthew | Emery-Cohen, Alexandra | Errington, Helen | Evans, Kathryn L. | Faulkner, Louisa | Francis, Fiona | Frankland, John | Fraser, Audrey E. | Galgoczy, Petra | Gilbert, James | Gill, Rachel | Glöckner, Gernot | Gregory, Simon G. | Gribble, Susan | Griffiths, Coline | Grocock, Russell | Gu, Yanghong | Gwilliam, Rhian | Hamilton, Cerissa | Hart, Elizabeth A. | Hawes, Alicia | Heath, Paul D. | Heitmann, Katja | Hennig, Steffen | Hernandez, Judith | Hinzmann, Bernd | Ho, Sarah | Hoffs, Michael | Howden, Phillip J. | Huckle, Elizabeth J. | Hume, Jennifer | Hunt, Paul J. | Hunt, Adrienne R. | Isherwood, Judith | Jacob, Leni | Johnson, David | Jones, Sally | de Jong, Pieter J. | Joseph, Shirin S. | Keenan, Stephen | Kelly, Susan | Kershaw, Joanne K. | Khan, Ziad | Kioschis, Petra | Klages, Sven | Knights, Andrew J. | Kosiura, Anna | Kovar-Smith, Christie | Laird, Gavin K. | Langford, Cordelia | Lawlor, Stephanie | Leversha, Margaret | Lewis, Lora | Liu, Wen | Lloyd, Christine | Lloyd, David M. | Loulseged, Hermela | Loveland, Jane E. | Lovell, Jamieson D. | Lozado, Ryan | Lu, Jing | Lyne, Rachael | Ma, Jie | Maheshwari, Manjula | Matthews, Lucy H. | McDowall, Jennifer | McLaren, Stuart | McMurray, Amanda | Meidl, Patrick | Meitinger, Thomas | Milne, Sarah | Miner, George | Mistry, Shailesh L. | Morgan, Margaret | Morris, Sidney | Müller, Ines | Mullikin, James C. | Nguyen, Ngoc | Nordsiek, Gabriele | Nyakatura, Gerald | O’Dell, Christopher N. | Okwuonu, Geoffery | Palmer, Sophie | Pandian, Richard | Parker, David | Parrish, Julia | Pasternak, Shiran | Patel, Dina | Pearce, Alex V. | Pearson, Danita M. | Pelan, Sarah E. | Perez, Lesette | Porter, Keith M. | Ramsey, Yvonne | Reichwald, Kathrin | Rhodes, Susan | Ridler, Kerry A. | Schlessinger, David | Schueler, Mary G. | Sehra, Harminder K. | Shaw-Smith, Charles | Shen, Hua | Sheridan, Elizabeth M. | Shownkeen, Ratna | Skuce, Carl D. | Smith, Michelle L. | Sotheran, Elizabeth C. | Steingruber, Helen E. | Steward, Charles A. | Storey, Roy | Swann, R. Mark | Swarbreck, David | Tabor, Paul E. | Taudien, Stefan | Taylor, Tineace | Teague, Brian | Thomas, Karen | Thorpe, Andrea | Timms, Kirsten | Tracey, Alan | Trevanion, Steve | Tromans, Anthony C. | d’Urso, Michele | Verduzco, Daniel | Villasana, Donna | Waldron, Lenee | Wall, Melanie | Wang, Qiaoyan | Warren, James | Warry, Georgina L. | Wei, Xuehong | West, Anthony | Whitehead, Siobhan L. | Whiteley, Mathew N. | Wilkinson, Jane E. | Willey, David L. | Williams, Gabrielle | Williams, Leanne | Williamson, Angela | Williamson, Helen | Wilming, Laurens | Woodmansey, Rebecca L. | Wray, Paul W. | Yen, Jennifer | Zhang, Jingkun | Zhou, Jianling | Zoghbi, Huda | Zorilla, Sara | Buck, David | Reinhardt, Richard | Poustka, Annemarie | Rosenthal, André | Lehrach, Hans | Meindl, Alfons | Minx, Patrick J. | Hillier, LaDeana W. | Willard, Huntington F. | Wilson, Richard K. | Waterston, Robert H. | Rice, Catherine M. | Vaudin, Mark | Coulson, Alan | Nelson, David L. | Weinstock, George | Sulston, John E. | Durbin, Richard | Hubbard, Tim | Gibbs, Richard A. | Beck, Stephan | Rogers, Jane | Bentley, David R.
Nature  2005;434(7031):325-337.
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
doi:10.1038/nature03440
PMCID: PMC2665286  PMID: 15772651
8.  Speeding disease gene discovery by sequence based candidate prioritization 
BMC Bioinformatics  2005;6:55.
Background
Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning.
Results
We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time.
Conclusion
PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.
doi:10.1186/1471-2105-6-55
PMCID: PMC1274252  PMID: 15766383
9.  SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi automated method for data storage and analysis 
Nucleic Acids Research  2002;30(15):e74.
We have compared the accuracy, efficiency and robustness of three methods of genotyping single nucleotide polymorphisms on pooled DNAs. We conclude that (i) the frequencies of the two alleles in pools should be corrected with a factor for unequal allelic amplification, which should be estimated from the mean ratio of a set of heterozygotes (k); (ii) the repeatability of an assay is more important than pinpoint accuracy when estimating allele frequencies, and assays should therefore be optimised to increase the repeatability; and (iii) the size of a pool has a relatively small effect on the accuracy of allele frequency estimation. We therefore recommend that large pools are genotyped and replicated a minimum of four times. In addition, we describe statistical approaches to allow rigorous comparison of DNA pool results. Finally, we describe an extension to our ACeDB database that facilitates management and analysis of the data generated by association studies.
PMCID: PMC137092  PMID: 12140336
10.  Twin peaks: the draft human genome sequence 
Genome Biology  2001;2(3):comment2003.1-comment2003.5.
Once thought to be impossible or a waste of resources, the initial high-volume stages of sequencing the human genome have been completed.
PMCID: PMC138909  PMID: 11276423

Results 1-10 (10)