PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Identification of serum biomarkers in dogs naturally infected with Babesia canis canis using a proteomic approach 
BMC Veterinary Research  2014;10:111.
Background
Canine babesiosis is a tick-borne disease that is caused by the haemoprotozoan parasites of the genus Babesia. There are limited data on serum proteomics in dogs, and none of the effect of babesiosis on the serum proteome. The aim of this study was to identify the potential serum biomarkers of babesiosis using proteomic techniques in order to increase our understanding about disease pathogenesis.
Results
Serum samples were collected from 25 dogs of various breeds and sex with naturally occurring babesiosis caused by B. canis canis. Blood was collected on the day of admission (day 0), and subsequently on the 1st and 6th day of treatment.
Two-dimensional electrophoresis (2DE) of pooled serum samples of dogs with naturally occurring babesiosis (day 0, day 1 and day 6) and healthy dogs were run in triplicate. 2DE image analysis showed 64 differentially expressed spots with p ≤ 0.05 and 49 spots with fold change ≥2. Six selected spots were excised manually and subjected to trypsin digest prior to identification by electrospray ionisation mass spectrometry on an Amazon ion trap tandem mass spectrometry (MS/MS). Mass spectrometry data was processed using Data Analysis software and the automated Matrix Science Mascot Daemon server. Protein identifications were assigned using the Mascot search engine to interrogate protein sequences in the NCBI Genbank database.
A number of differentially expressed serum proteins involved in inflammation mediated acute phase response, complement and coagulation cascades, apolipoproteins and vitamin D metabolism pathway were identified in dogs with babesiosis.
Conclusions
Our findings confirmed two dominant pathogenic mechanisms of babesiosis, haemolysis and acute phase response. These results may provide possible serum biomarker candidates for clinical monitoring of babesiosis and this study could serve as the basis for further proteomic investigations in canine babesiosis.
doi:10.1186/1746-6148-10-111
PMCID: PMC4045879  PMID: 24885808
Dog; Babesiosis; Acute phase proteins; Serum biomarkers; Proteomics; 2-dimensional electrophoresis
2.  Two major ruminant acute phase proteins, haptoglobin and serum amyloid A, as serum biomarkers during active sheep scab infestation 
Veterinary Research  2013;44(1):103.
Two ruminant acute phase proteins (APPs), haptoglobin (Hp) and serum amyloid A (SAA), were evaluated as serum biomarkers (BMs) for sheep scab–a highly contagious ectoparasitic disease caused by the mite Psoroptes ovis, which is a major welfare and production threat worldwide. The levels of both APPs increased in serum following experimental infestation of sheep with P. ovis, becoming statistically significantly elevated from pre-infestation levels at 4 weeks post-infestation. Following successful treatment of infested sheep with an endectocide, Hp and SAA serum levels declined rapidly, with half lives of less than 3 days. In contrast, serum IgG levels which specifically bound the P. ovis-derived diagnostic antigen Pso o 2 had a half-life of 56 days. Taking into account pre-infestation serum levels, rapidity of response to infestation and test sensitivity at the estimated optimum cut-off values, SAA was the more discriminatory marker. These studies illustrated the potential of SAA and Hp to indicate current sheep scab infestation status and to augment the existing Pso o 2 serological assay to give disease-specific indications of both infestation and successful treatment.
doi:10.1186/1297-9716-44-103
PMCID: PMC3832035  PMID: 24176040
3.  Maternal undernutrition and the ovine acute phase response to vaccination 
Background
The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin (Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy (Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P™ following primary and secondary vaccination.
Results
The Hp and SAA concentrations were significantly lower at the time of vaccination (day 8–14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response.
Conclusion
Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual APP.
doi:10.1186/1746-6148-4-1
PMCID: PMC2233616  PMID: 18197966
4.  Acute phase protein response in an experimental model of ovine caseous lymphadenitis 
Background
Caseous lymphadenitis (CLA) is a disease of small ruminants caused by Corynebacterium pseudotuberculosis. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP) such as haptoglobin (Hp) serum amyloid A (SAA) and α1 acid glycoprotein (AGP) are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CLA but it is not known if SAA and AGP respond in parallel or have differing response profiles.
Results
The concentration in serum of Hp, SAA and AGP in 6 sheep challenged with 2 × 105 cells of C. pseudotuberculosis showed significant increases (P < 0.05) compared to 3 unchallenged control sheep. By day 7 post infection. (p.i.) the Hp and SAA concentrations reached mean (± SEM) values of 1.65 ± 0.21 g/L and 18.1 ± 5.2 mg/L respectively. Thereafter, their concentrations fell with no significant difference to those of the control sheep by day 18 p.i.. In contrast, the serum AGP concentration in infected sheep continued to rise to a peak of 0.38 ± 0.05 g/L on day 13 p.i., after which a slow decline occurred, although the mean concentration remained significantly higher (P < 0.05) than the control group up to 29 days p.i.. Specific IgG to phospholidase D of C. pseudotuberculosis became detectable at 11 days p.i. and continued to rise throughout the experiment.
Conclusion
The serum concentrations of Hp, SAA and AGP were raised in sheep in an experimental model of CLA. An extended response was found for AGP which occurred at a point when the infection was likely to have been transforming from an acute to a chronic phase. The results suggest that AGP could have a role as a marker for chronic conditions in sheep.
doi:10.1186/1746-6148-3-35
PMCID: PMC2235841  PMID: 18093286

Results 1-4 (4)