PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE 
BMC Genomics  2013;14:494.
Background
Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition.
Results
In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies.
Conclusions
Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.
doi:10.1186/1471-2164-14-494
PMCID: PMC3734164  PMID: 23875683
2.  InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data 
Bioinformatics  2012;28(23):3163-3165.
Summary: InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of ‘widgets’ performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages.
Availability: Freely available from http://www.intermine.org under the LGPL license.
Contact: g.micklem@gen.cam.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts577
PMCID: PMC3516146  PMID: 23023984
3.  modMine: flexible access to modENCODE data 
Nucleic Acids Research  2011;40(D1):D1082-D1088.
In an effort to comprehensively characterize the functional elements within the genomes of the important model organisms Drosophila melanogaster and Caenorhabditis elegans, the NHGRI model organism Encyclopaedia of DNA Elements (modENCODE) consortium has generated an enormous library of genomic data along with detailed, structured information on all aspects of the experiments. The modMine database (http://intermine.modencode.org) described here has been built by the modENCODE Data Coordination Center to allow the broader research community to (i) search for and download data sets of interest among the thousands generated by modENCODE; (ii) access the data in an integrated form together with non-modENCODE data sets; and (iii) facilitate fine-grained analysis of the above data. The sophisticated search features are possible because of the collection of extensive experimental metadata by the consortium. Interfaces are provided to allow both biologists and bioinformaticians to exploit these rich modENCODE data sets now available via modMine.
doi:10.1093/nar/gkr921
PMCID: PMC3245176  PMID: 22080565
4.  The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details 
The model organism Encyclopedia of DNA Elements (modENCODE) project is a National Human Genome Research Institute (NHGRI) initiative designed to characterize the genomes of Drosophila melanogaster and Caenorhabditis elegans. A Data Coordination Center (DCC) was created to collect, store and catalog modENCODE data. An effective DCC must gather, organize and provide all primary, interpreted and analyzed data, and ensure the community is supplied with the knowledge of the experimental conditions, protocols and verification checks used to generate each primary data set. We present here the design principles of the modENCODE DCC, and describe the ramifications of collecting thorough and deep metadata for describing experiments, including the use of a wiki for capturing protocol and reagent information, and the BIR-TAB specification for linking biological samples to experimental results. modENCODE data can be found at http://www.modencode.org.
Database URL: http://www.modencode.org.
doi:10.1093/database/bar023
PMCID: PMC3170170  PMID: 21856757
5.  Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project 
Gerstein, Mark B. | Lu, Zhi John | Van Nostrand, Eric L. | Cheng, Chao | Arshinoff, Bradley I. | Liu, Tao | Yip, Kevin Y. | Robilotto, Rebecca | Rechtsteiner, Andreas | Ikegami, Kohta | Alves, Pedro | Chateigner, Aurelien | Perry, Marc | Morris, Mitzi | Auerbach, Raymond K. | Feng, Xin | Leng, Jing | Vielle, Anne | Niu, Wei | Rhrissorrakrai, Kahn | Agarwal, Ashish | Alexander, Roger P. | Barber, Galt | Brdlik, Cathleen M. | Brennan, Jennifer | Brouillet, Jeremy Jean | Carr, Adrian | Cheung, Ming-Sin | Clawson, Hiram | Contrino, Sergio | Dannenberg, Luke O. | Dernburg, Abby F. | Desai, Arshad | Dick, Lindsay | Dosé, Andréa C. | Du, Jiang | Egelhofer, Thea | Ercan, Sevinc | Euskirchen, Ghia | Ewing, Brent | Feingold, Elise A. | Gassmann, Reto | Good, Peter J. | Green, Phil | Gullier, Francois | Gutwein, Michelle | Guyer, Mark S. | Habegger, Lukas | Han, Ting | Henikoff, Jorja G. | Henz, Stefan R. | Hinrichs, Angie | Holster, Heather | Hyman, Tony | Iniguez, A. Leo | Janette, Judith | Jensen, Morten | Kato, Masaomi | Kent, W. James | Kephart, Ellen | Khivansara, Vishal | Khurana, Ekta | Kim, John K. | Kolasinska-Zwierz, Paulina | Lai, Eric C. | Latorre, Isabel | Leahey, Amber | Lewis, Suzanna | Lloyd, Paul | Lochovsky, Lucas | Lowdon, Rebecca F. | Lubling, Yaniv | Lyne, Rachel | MacCoss, Michael | Mackowiak, Sebastian D. | Mangone, Marco | McKay, Sheldon | Mecenas, Desirea | Merrihew, Gennifer | Miller, David M. | Muroyama, Andrew | Murray, John I. | Ooi, Siew-Loon | Pham, Hoang | Phippen, Taryn | Preston, Elicia A. | Rajewsky, Nikolaus | Rätsch, Gunnar | Rosenbaum, Heidi | Rozowsky, Joel | Rutherford, Kim | Ruzanov, Peter | Sarov, Mihail | Sasidharan, Rajkumar | Sboner, Andrea | Scheid, Paul | Segal, Eran | Shin, Hyunjin | Shou, Chong | Slack, Frank J. | Slightam, Cindie | Smith, Richard | Spencer, William C. | Stinson, E. O. | Taing, Scott | Takasaki, Teruaki | Vafeados, Dionne | Voronina, Ksenia | Wang, Guilin | Washington, Nicole L. | Whittle, Christina M. | Wu, Beijing | Yan, Koon-Kiu | Zeller, Georg | Zha, Zheng | Zhong, Mei | Zhou, Xingliang | Ahringer, Julie | Strome, Susan | Gunsalus, Kristin C. | Micklem, Gos | Liu, X. Shirley | Reinke, Valerie | Kim, Stuart K. | Hillier, LaDeana W. | Henikoff, Steven | Piano, Fabio | Snyder, Michael | Stein, Lincoln | Lieb, Jason D. | Waterston, Robert H.
Science (New York, N.Y.)  2010;330(6012):1775-1787.
We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor–binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor–binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
doi:10.1126/science.1196914
PMCID: PMC3142569  PMID: 21177976
6.  COMe: the ontology of bioinorganic proteins 
Background
Many characterised proteins contain metal ions, small organic molecules or modified residues. In contrast, the huge amount of data generated by genome projects consists exclusively of sequences with almost no annotation. One of the goals of the structural genomics initiative is to provide representative three-dimensional (3-D) structures for as many protein/domain folds as possible to allow successful homology modelling. However, important functional features such as metal co-ordination or a type of prosthetic group are not always conserved in homologous proteins. So far, the problem of correct annotation of bioinorganic proteins has been largely ignored by the bioinformatics community and information on bioinorganic centres obtained by methods other than crystallography or NMR is only available in literature databases.
Results
COMe (Co-Ordination of Metals) represents the ontology for bioinorganic and other small molecule centres in complex proteins. COMe consists of three types of entities: 'bioinorganic motif' (BIM), 'molecule' (MOL), and 'complex proteins' (PRX), with each entity being assigned a unique identifier. A BIM consists of at least one centre (metal atom, inorganic cluster, organic molecule) and two or more endogenous and/or exogenous ligands. BIMs are represented as one-dimensional (1-D) strings and 2-D diagrams. A MOL entity represents a 'small molecule' which, when in complex with one or more polypeptides, forms a functional protein. The PRX entities refer to the functional proteins as well as to separate protein domains and subunits. The complex proteins in COMe are subdivided into three categories: (i) metalloproteins, (ii) organic prosthetic group proteins and (iii) modified amino acid proteins. The data are currently stored in both XML format and a relational database and are available at .
Conclusion
COMe provides the classification of proteins according to their 'bioinorganic' features and thus is orthogonal to other classification schemes, such as those based on sequence similarity, 3-D fold, enzyme activity, or biological process. The hierarchical organisation of the controlled vocabulary allows both for annotation and querying at different levels of granularity.
doi:10.1186/1472-6807-4-3
PMCID: PMC395836  PMID: 15113423

Results 1-6 (6)