Search tips
Search criteria

Results 1-25 (80)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Correction: Structural basis for the prion-like MAVS filaments in antiviral innate immunity 
eLife  null;4:e07546.
PMCID: PMC4526786  PMID: 26314863
MAVS; innate immunity; prion-like filaments; cryoEM reconstruction; human; viruses
2.  MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses 
Science (New York, N.Y.)  2014;346(6216):1486-1492.
Multivalent molecules with repetitive structures including bacterial capsular polysaccharides and viral capsids elicit antibody responses through B cell receptor (BCR) crosslinking in the absence of T cell help. We report that immunization with these T cell-independent type 2 (TI-2) antigens causes upregulation of endogenous retrovirus (ERV) RNAs in antigen-specific mouse B cells. These RNAs are detected via a MAVS-dependent RNA sensing pathway or reverse transcribed and detected via the cGAS-cGAMP-STING pathway, triggering a second, sustained wave of signaling that promotes specific IgM production. Deficiency of both MAVS and cGAS, or treatment of MAVS-deficient mice with reverse transcriptase inhibitors, dramatically inhibits TI-2 antibody responses. These findings suggest that ERV and two innate sensing pathways that detect them are integral components of the TI-2 B cell signaling apparatus.
PMCID: PMC4391621  PMID: 25525240
3.  Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation 
Cell  2014;156(6):1207-1222.
Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These results indicate that prion-like polymerization is a conserved signal transduction mechanism in innate immunity and inflammation.
PMCID: PMC4034535  PMID: 24630723
4.  Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2 
PLoS ONE  2015;10(3):e0119727.
Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13−/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms.
PMCID: PMC4355416  PMID: 25756897
5.  Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects 
Science (New York, N.Y.)  2013;341(6152):10.1126/science.1244040.
Invasion of microbial DNA into the cytoplasm of animal cells triggers a cascade of host immune reactions that help clear the infection; however, self DNA in the cytoplasm can cause autoimmune diseases. Biochemical approaches led to the identification of cyclic GMP-AMP (cGAMP) synthase (cGAS) as a cytosolic DNA sensor that triggers innate immune responses. Here we show that cells from cGAS-deficient (cGas−/−) mice, including fibroblasts, macrophages and dendritic cells, failed to produce type-I interferons and other cytokines in response to DNA transfection or DNA virus infection. cGas−/− mice were more susceptible to lethal infection with herpes simplex virus-1 (HSV1) than wild type mice. We also show that cGAMP is an adjuvant that boosts antigen-specific T cell activation and antibody production in mice.
PMCID: PMC3863637  PMID: 23989956
6.  Working Memory Inefficiency: Minimal Information is Utilized in Visual Recognition Tasks 
Can people make perfect use of task-relevant information in working memory (WM)? Specifically, when questioned about an item in an array that does not happen to be in WM, can participants take into account other items that are in WM, eliminating them as response candidates? To address this question, an ideal-responder model that assumes perfect use of items in a capacity-limited WM was tested against a minimal-responder model that assumes use of only information about the queried item. Three different WM tasks were adopted: change detection, identity recognition, and location recognition. The change-detection task produced benchmark WM results. The two novel tasks showed that only the minimal responder model provided convergence with this benchmark. This finding was replicable even when the change-detection task was replaced by a feature-switch detection task. Thus, it appears that people do not make full use of information in WM.
PMCID: PMC3770825  PMID: 23421509
7.  IKKε-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex 
Cell reports  2013;3(3):724-733.
IκB kinase ε (IKKε, IKBKE) is a key regulator of innate immunity and a breast cancer oncogene, amplified in ~30% of breast cancers, that promotes malignant transformation through NF-κB activation. Here we show that IKKε is modified and regulated by K63-linked polyubiquitination at Lysine 30 and Lysine 401. TNFα and IL-1β stimulation induces IKKε K63-linked polyubiquitination over baseline levels in both macrophages and breast cancer cell lines, and this modification is essential for IKKε kinase activity, IKKε-mediated NF-κB activation and IKKε-induced malignant transformation. Disruption of K63-linked ubiquitination of IKKε does not affect its overall structure but impairs the recruitment of canonical NF-κB proteins. A cIAP1/cIAP2/TRAF2 E3 ligase complex binds to and ubiquitinates IKKε. Together, these observations demonstrate that K63-linked polyubiquitination regulates IKKε activity in both inflammatory and oncogenic contexts and suggests an alterative approach to target this breast cancer oncogene.
PMCID: PMC4135466  PMID: 23453969
8.  An exploration of heterogeneity in genetic analysis of complex pedigrees: linkage and association using whole genome sequencing data in the MAP4 region 
BMC Proceedings  2014;8(Suppl 1):S107.
We conduct pedigree-based linkage and association analyses of simulated systolic blood pressure data in the nonascertained large Mexican American pedigrees provided by Genetic Analysis Workshop 18, focusing on observed sequence variants in MAP4 on chromosome 3. Because pedigrees are large and sequence data have been completed by imputation, it is feasible to conduct analysis for each pedigree separately as well as for all pedigrees combined. We are interested in quantifying and explaining between-pedigree heterogeneity in linkage and association signals. To this end, we first examine minor allele frequency differences between pedigrees. In some of the pedigrees, rare and low-frequency variants occur at a higher prevalence than in all pedigrees combined. In simulation replicate 1, we conduct variance-components linkage and association analysis of all 894 MAP4 variants to compare analytic approaches in single pedigree and combined analysis. In all 200 replicates, we similarly examine the 15 causal variants in MAP4 known under the generating model. We illustrate how random allele frequency variation among pedigrees leads to heterogeneity in pedigree-specific linkage and association signals.
PMCID: PMC4143705  PMID: 25519361
9.  Multiphase analysis by linkage, quantitative transmission disequilibrium, and measured genotype: systolic blood pressure in complex Mexican American pedigrees 
BMC Proceedings  2014;8(Suppl 1):S108.
We apply a multiphase strategy for pedigree-based genetic analysis of systolic blood pressure data collected in a longitudinal study of large Mexican American pedigrees. In the first phase, we conduct variance-components linkage analysis to identify regions that may harbor quantitative trait loci. In the second phase, we carry out pedigree-based association analysis in a selected region with common and low-frequency variants from genome-wide association studies and whole genome sequencing data. Using sequencing data, we compare approaches to pedigree analysis in a 10 megabase candidate region on chromosome 3 harboring a gene previously identified by a consortium for blood pressure genome-wide association studies. We observe that, as expected, the measured genotype analysis tends to provide larger signals than the quantitative transmission disequilibrium test. We also observe that while linkage signals are contributed by common variants, strong associations are found mainly at rare variants. Multiphase analysis can improve computational efficiency and reduce the multiple testing burden.
PMCID: PMC4143726  PMID: 25519311
10.  Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride 
Scientific Reports  2014;4:5071.
Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends.
PMCID: PMC4034005  PMID: 24861168
11.  Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway 
PLoS Pathogens  2014;10(4):e1003989.
Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.
Author Summary
Modified vaccinia virus Ankara (MVA) is an attenuated vaccinia strain with large deletions of the parental genome that render it non-replicative in mammalian cells. MVA is a safe and effective vaccine against both smallpox and monkeypox. MVA has been investigated as a vaccine vector for infectious diseases and cancers. Dendritic cells (DCs) play important roles in innate and adaptive immunity. A better understanding of how MVA is detected by innate immune sensors in DCs would guide the development of more effective MVA-based vaccines. We report our findings that MVA infection induces the production of type I interferon (IFN) in conventional dendritic cells via a cytosolic DNA-sensing pathway mediated by the newly discovered DNA sensor cGAS, its adaptor STING, and transcription factors IRF3 and IRF7. By contrast, wild-type vaccinia virus fails to activate this pathway. Furthermore, we show that vaccinia virulence factors E3 and N1 play inhibitory roles in the cytosolic DNA-sensing pathway.
PMCID: PMC3990710  PMID: 24743339
12.  The Cytosolic DNA Sensor cGAS Forms An Oligomeric Complex with DNA and Undergoes Switch-like Conformational Changes in the Activation Loop 
Cell reports  2014;6(3):421-430.
The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type-I interferons and other cytokines. Here we report the crystal structures of human cGAS in its apo form, representing its auto-inhibited conformation, as well as cGAMP-bound and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide new insights into the mechanism of DNA sensing by cGAS.
PMCID: PMC3969844  PMID: 24462292
13.  A Novel Missense Mutation in the Nuclear Factor-κB Essential Modulator (NEMO) Gene Resulting in Impaired Activation of the NF-κB Pathway and a Unique Clinical Phenotype Presenting as MRSA Subdural Empyema 
Journal of clinical immunology  2010;30(6):881-885.
We describe a previously unreported 437 T→G missense mutation producing a V146G substitution in the first coiled-coil (CC1) domain of nuclear factor-κB essential modulator (NEMO) in a 9-month-old boy with ectodermal dysplasia with immunodeficiency who presented with methicillin-resistant Staphylococcus aureus subdural empyema. We performed in vitro experiments to determine if this novel mutation resulted in impaired NF-κB signaling.
IκBα phosphorylation experiments were performed using a Jurkat T cell line lacking endogenous NEMO expression that was transfected with vectors containing either the wild type or the patient’s V146G mutation. The cells were stimulated with TNF-α to activate the NF-κB pathway. Phosphorylated IκBα was detected by immunoblotting with anti-phospho-IκBα antibodies. Peripheral blood mononuclear cells from the patient were stimulated with TNF-α or anti-CD3 and anti-CD28. Impaired IκBα degradation was detected using antibodies against the IκBα protein.
While TNF-α stimulation resulted in IκBα phosphorylation in NEMO-deficient Jurkat cells reconstituted with wild-type NEMO, cell transfected with the V146G mutant exhibited a 75% reduction in phospho-IκBα. Peripheral blood mononuclear cells from the patient showed impaired degradation of IκBα after stimulation when compared with normal controls.
The patient’s V146G mutation results in impaired NF-κB activation in vitro. The mutation extends the known N-terminal boundary within the CC1 domain that produces an ectodermal dysplasia phenotype, and defines an infectious susceptibility previously unappreciated in ectodermal dysplasia with immunodeficiency (methicillin-resistant S. aureus subdural empyema), broadening the clinical spectrum associated with the disease.
PMCID: PMC3951109  PMID: 20652730
NEMO; immunodeficiency; ectodermal; dysplasia; mutation; MRSA
14.  Structural basis for the prion-like MAVS filaments in antiviral innate immunity 
eLife  2014;3:e01489.
Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments.
eLife digest
When infected by a virus, the body will generally launch an immune response to eliminate the infectious agent. Activation of the innate immune system–the first line of defense against infection—requires the host cells to recognize the presence of a pathogen and to sound the alarm once the invader is detected.
Viruses can contain DNA or RNA, and when a virus containing double stranded RNA enters a cell, or starts replicating within the cytoplasm, proteins called RIG-I-like receptors (RLRs) will detect these RNA molecules. This will trigger a signaling cascade that results in the production of type I interferons, the proteins that activate cells of the innate immune system.
Members of the RLR family of receptors, including RIG-I and MDA5, initiate the signaling cascade by interacting with the mitochondrial antiviral-signaling (MAVS) protein. Recent work revealed that upon activation by RIG-I or MDA5, MAVS proteins aggregate on the surface of mitochondria and form protein filaments. These filaments then activate inactive MAVS proteins, leading to the formation of more filaments. While a region of the MAVS protein called caspase activation and recruitment domain (CARD) is known to be involved in the formation of the filaments, the chemical interactions that govern the formation process have yet to be described.
Now, using cryo-electron microscopy, Xu et al. have shown that these filaments are comprised of three-stranded helixes. This came as something of a surprise because other similar filaments known as prions are made of tightly packed beta sheets. Xu et al. went on to visualize full-length MAVS filaments in virus-infected cells, and to verify that mutations that impair the assembly of MAVS filaments also prevent RNA viruses from triggering the production of interferon. These results have the potential to inform future studies of the innate immune response, as well as investigations into the assembly of proteins to form prion-like filaments.
PMCID: PMC3932521  PMID: 24569476
MAVS; innate immunity; prion-like filaments; cryoEM reconstruction; three-stranded filaments; human; viruses
15.  Cyclic GMP-AMP Synthase is an Innate Immune Sensor of HIV and Other Retroviruses 
Science (New York, N.Y.)  2013;341(6148):10.1126/science.1240933.
Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic-GMP-AMP (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type-I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus (MLV) and Simian immunodeficiency virus (SIV). These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.
PMCID: PMC3860819  PMID: 23929945
16.  Regulation of NF-κB by Ubiquitination 
Current opinion in immunology  2013;25(1):4-12.
The nuclear factor κ enhancer binding protein (NF-κB) family of transcription factors regulates the expression of a large array of genes involved in diverse cellular processes including inflammation, immunity and cell survival. Activation of NF-κB requires ubiquitination, a highly conserved and versatile modification that can regulate cell signaling through both proteasome dependent and independent mechanisms. Studies in the past few years have provided new insights into the mechanisms underlying regulation of NF-κB by ubiquitination, including the involvement of multiple linkages of ubiquitin, the essential role of ubiquitin binding, and the function of unanchored polyubiquitin chains. In this review, we will focus on recent advances in understanding the role of ubiquitination in NF-κB regulation in various pathways.
PMCID: PMC3594545  PMID: 23312890
17.  Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING 
Molecular cell  2013;51(2):10.1016/j.molcel.2013.05.022.
The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation.
PMCID: PMC3808999  PMID: 23747010
18.  microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2 
The morbidity and mortality of heart failure with preserved left ventricular ejection fraction (HFpEF) were similar to those of systolic heart failure, but the pathogenesis of HFpEF remains poorly understood. It was demonstrated that, in systolic heart failure, microRNA-21 (miR-21) could inhibit the apoptosis of cardiac fibroblasts, leading to cardiac hypertrophy and myocardial fibrosis, but the role of miR-21 in HFpEF remains unknown. By employing cell culture technique, rat myocardiocytes and cardiac fibroblasts were obtained. The expression of miR-21 in the two cell types under different conditions was compared and we found that the miR-21 expression was significantly higher in cardiac fibroblasts than in myocardiocytes. We established a rat HFpEF model and harvested the tissues of cardiac apex for pathological examination, Northern blotting and so forth. We found that miR-21 expression was significantly higher in model rats than in sham-operated rats, and the model rats developed the cardiac atrophy and cardiac fibrosis. After injection of miR-21 antagonist, the the cardiac atrophy and cardiac fibrosis were conspicuously ameliorated. Both in vivo and in vitro, inhibition of miR-21 expression resulted in reduced Bcl-2 expression while over-expression of miR-21 led to elevation of Bcl-2 expression. Our study suggested that miR-21 promoted the development of HFpEF by up-regulating the expression of anti-apoptotic gene Bcl-2 and thereby suppressing the apoptosis of cardiac fibrosis.
PMCID: PMC3925900  PMID: 24551276
Cardiac fibrosis; miR-21; Bcl-2; HFpEF
19.  The role of ubiquitylation in immune defence and pathogen evasion 
Nature reviews. Immunology  2011;12(1):10.1038/nri3111.
Ubiquitylation is a widely used post-translational protein modification that regulates many biological processes, including immune responses. The role of ubiquitin in immune regulation was originally uncovered through studies of antigen presentation and the nuclear factor-κB family of transcription factors, which orchestrate host defence against microorganisms. Recent studies have revealed crucial roles of ubiquitylation in many aspects of the immune system, including innate and adaptive immunity and antimicrobial autophagy. In addition, mounting evidence indicates that microbial pathogens exploit the ubiquitin pathway to evade the host immune system. Here, we review recent advances on the role of ubiquitylation in host defence and pathogen evasion.
PMCID: PMC3864900  PMID: 22158412
20.  Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway 
Science (New York, N.Y.)  2012;339(6121):10.1126/science.1232458.
The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.
PMCID: PMC3863629  PMID: 23258413
21.  Cyclic-GMP-AMP Is An Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA 
Science (New York, N.Y.)  2012;339(6121):10.1126/science.1229963.
Cytosolic DNA induces type-I interferons and other cytokines that are important for antimicrobial defense but can also result in autoimmunity. This DNA signaling pathway requires the adaptor protein STING and the transcription factor IRF3, but the mechanism of DNA sensing is unclear. Here we showed that mammalian cytosolic extracts synthesized cyclic-GMP-AMP (cGAMP) in vitro from ATP and GTP in the presence of DNA but not RNA. DNA transfection or DNA virus infection of mammalian cells also triggered cGAMP production. cGAMP bound to STING, leading to the activation of IRF3 and induction of interferon-β. Thus, cGAMP represents the first cyclic di-nucleotide in metazoa and it functions as an endogenous second messenger that triggers interferon production in response to cytosolic DNA.
PMCID: PMC3855410  PMID: 23258412
22.  RNA Helicase Signaling Is Critical for Type I Interferon Production and Protection against Rift Valley Fever Virus during Mucosal Challenge 
Journal of Virology  2013;87(9):4846-4860.
Rift Valley fever virus (RVFV) is an emerging RNA virus with devastating economic and social consequences. Clinically, RVFV induces a gamut of symptoms ranging from febrile illness to retinitis, hepatic necrosis, hemorrhagic fever, and death. It is known that type I interferon (IFN) responses can be protective against severe pathology; however, it is unknown which innate immune receptor pathways are crucial for mounting this response. Using both in vitro assays and in vivo mucosal mouse challenge, we demonstrate here that RNA helicases are critical for IFN production by immune cells and that signaling through the helicase adaptor molecule MAVS (mitochondrial antiviral signaling) is protective against mortality and more subtle pathology during RVFV infection. In addition, we demonstrate that Toll-like-receptor-mediated signaling is not involved in IFN production, further emphasizing the importance of the RNA cellular helicases in type I IFN responses to RVFV.
PMCID: PMC3624317  PMID: 23408632
23.  Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination 
Cell  2013;152(5):1051-1064.
Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a novel role for ubiquitination in this process. We find that the novel E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the Retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired Retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of Retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and Retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 and reveal novel aspects of retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex.
PMCID: PMC3640276  PMID: 23452853
24.  Competing E3 Ubiquitin Ligases Determine Circadian Period by Regulated Degradation of CRY in Nucleus and Cytoplasm 
Cell  2013;152(5):1091-1105.
Period determination in the mammalian circadian clock involves the turnover rate of the repressors, CRY and PER. Here we show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate (G149E) missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss-of-function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm, but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.
PMCID: PMC3694781  PMID: 23452855
25.  MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades 
eLife  2013;2:e00785.
RNA virus infections are detected by the RIG-I family of receptors, which induce type-I interferons through the mitochondrial protein MAVS. MAVS forms large prion-like polymers that activate the cytosolic kinases IKK and TBK1, which in turn activate NF-κB and IRF3, respectively, to induce interferons. Here we show that MAVS polymers recruit several TRAF proteins, including TRAF2, TRAF5, and TRAF6, through distinct TRAF-binding motifs. Mutations of these motifs that disrupted MAVS binding to TRAFs abrogated its ability to activate IRF3. IRF3 activation was also abolished in cells lacking TRAF2, 5, and 6. These TRAF proteins promoted ubiquitination reactions that recruited NEMO to the MAVS signaling complex, leading to the activation of IKK and TBK1. These results delineate the mechanism of MAVS signaling and reveal that TRAF2, 5, and 6, which are normally associated with NF-κB activation, also play a crucial role in IRF3 activation in antiviral immune responses.
eLife digest
The innate immune system can detect and destroy viruses, bacteria and other pathogens that enter the human body. In particular, inside cells, viral RNA can bind to and activate a protein called RIG-I. This protein switches on another protein, called MAVS, which can activate other copies of itself. These MAVS molecules then aggregate together on the membrane of mitochondria and send a signal that leads to the production of small proteins, called cytokines, which stimulate an inflammatory response and ultimately neutralize the virus.
Although many of the proteins that are activated by MAVS in the innate immunity signaling pathway have been identified, precisely how MAVS transmits this signal is unknown. Now, Liu et al. explore how this protein can propagate signals in the innate immune response by monitoring activation of the transcription factors IRF3 and NF-κB, which transcribe cytokine genes.
Previous studies have suggested that a protein known as ubiquitin is needed to activate RIG-I, and that this protein collaborates with MAVS to signal through the innate immunity pathway. Liu et al. found that a group of proteins including TRAF2, TRAF5, TRAF6 and LUBAC relay the antiviral signal by binding to MAVS. These so-called ‘E3 ligases’ string ubiquitin together in chains called polyubiquitin, which is essential for activating signaling after, or downstream of, MAVS; however, the association of these E3 ligases with MAVS also requires that multiple copies of MAVS cluster together.
MAVS, the TRAF proteins and LUBAC collectively recruit other innate immunity pathway proteins to activate IRF3 and NF-κB, and thus transcription of the genes that control the innate immunity response. Together, these results show the intricate interplay of proteins needed to eliminate viruses from the body.
PMCID: PMC3743401  PMID: 23951545
MAVS; innate immunity; virus; ubiquitin; signaling; mitochondria; Human; Mouse; Viruses

Results 1-25 (80)