PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Characterizing Genetic Variants for Clinical Action 
Genome-wide association studies, DNA sequencing studies, and other genomic studies are finding an increasing number of genetic variants associated with clinical phenotypes that may be useful in developing diagnostic, preventive, and treatment strategies for individual patients. However, few common variants have been integrated into routine clinical practice. The reasons for this are several, but two of the most significant are limited evidence about the clinical implications of the variants and a lack of a comprehensive knowledge base that captures genetic variants, their phenotypic associations, and other pertinent phenotypic information that is openly accessible to clinical groups attempting to interpret sequencing data. As the field of medicine begins to incorporate genome-scale analysis into clinical care, approaches need to be developed for collecting and characterizing data on the clinical implications of variants, developing consensus on their actionability, and making this information available for clinical use. The National Human Genome Research Institute (NHGRI) and the Wellcome Trust thus convened a workshop to consider the processes and resources needed to: 1) identify clinically valid genetic variants; 2) decide whether they are actionable and what the action should be; and 3) provide this information for clinical use. This commentary outlines the key discussion points and recommendations from the workshop.
doi:10.1002/ajmg.c.31386
PMCID: PMC4158437  PMID: 24634402
genomic medicine; clinical actionability; database; electronic health records (EHR); pharmacogenomics; DNA sequencing
3.  A HapMap harvest of insights into the genetics of common disease 
The Journal of Clinical Investigation  2008;118(5):1590-1605.
The International HapMap Project was designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases. This expectation has been amply fulfilled with just the initial output of genome-wide association studies, identifying nearly 100 loci for nearly 40 common diseases and traits. These associations provided new insights into pathophysiology, suggesting previously unsuspected etiologic pathways for common diseases that will be of use in identifying new therapeutic targets and developing targeted interventions based on genetically defined risk. In addition, HapMap-based discoveries have shed new light on the impact of evolutionary pressures on the human genome, suggesting multiple loci important for adapting to disease-causing pathogens and new environments. In this review we examine the origin, development, and current status of the HapMap; its prospects for continued evolution; and its current and potential future impact on biomedical science.
doi:10.1172/JCI34772
PMCID: PMC2336881  PMID: 18451988

Results 1-3 (3)