Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Automated analysis of embryonic gene expression with cellular resolution in C. elegans 
Nature methods  2008;5(8):703-709.
We describe a system that permits the automated analysis of reporter gene expression in Caenorhabditis elegans with cellular resolution continuously during embryogenesis and demonstrate its utility by defining the expression patterns of reporters for several embryonically expressed transcription factors. The invariant cell lineage permits the automated alignment of multiple expression profiles, allowing the direct comparison of the expression of different genes' reporters. We have also used the system to monitor perturbations to normal development involving changes both in cell division timing and in cell fate. Systematic application could reveal the gene activity of each cell throughout development.
PMCID: PMC2553703  PMID: 18587405
2.  A Negative Regulatory Loop between MicroRNA and Hox Gene Controls Posterior Identities in Caenorhabditis elegans 
PLoS Genetics  2010;6(9):e1001089.
MicroRNAs (miRNAs) have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes.
Author Summary
miRNAs are small RNAs found in many multi-cellular species that inhibit gene expression. Many of them play important roles in cancer and cell fate determination, but the function of most miRNAs is uncertain. Using live cell imaging and automated expression analysis, we found a miRNA gene, mir-57, is expressed in a position rather than tissue dependent way. Hox genes also regulate cell fate patterning along anterior-posterior (a-p) axis across different tissues. By investigating interactions between genes of these classes expressed in mir-57 expressing cells, we demonstrated by both genetic analysis and gene expression assays that a negative feedback loop between a posterior Hox gene, nob-1, and mir-57 regulates posterior cell fate determination in C. elegans. On the one hand, the Hox gene is required for normal activation of mir-57 expression, and on the other, the Hox gene functions as a direct target of and is repressed by the miRNA. Given the conservation of the two genes, a negative feedback loop between Hox and miRNA genes might be broadly used across species to regulate cell fate along the a-p axis. Detailed expression analysis may provide a general way to dissect the regulatory role of miRNAs.
PMCID: PMC2932687  PMID: 20824072
3.  Comparative Analysis of Embryonic Cell Lineage between Caenorhabditis briggsae and C. elegans 
Developmental biology  2007;314(1):93-99.
Comparative genomic analysis of important signaling pathways in C. briggase and C. elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally-equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.
PMCID: PMC2696483  PMID: 18164284
C. briggsae; C. elegans; embryo; cell lineage; signaling pathway
4.  Control of Cell Cycle Timing during C. elegans Embryogenesis 
Developmental biology  2008;318(1):65-72.
As a fundamental process of development, cell proliferation must be coordinated with other processes such as fate differentiation. Through statistical analysis of individual cell cycle lengths of the first eight out of ten rounds of embryonic cell division in C. elegans, we identified synchronous and invariantly ordered divisions that are tightly associated with fate differentiation. Our results suggest a three-tier model for fate control of cell cycle pace: the primary control of cell cycle pace is established by lineage and the founder cell fate, then fine-tuned by tissue and organ differentiation within each lineage, then further modified by individualization of cells as they acquire unique morphological and physiological roles in the variant body plan. We then set out to identify the pace-setting mechanisms in different fates. Our results suggest that ubiquitin-mediated degradation of CDC-25.1 is a rate-determining step for the E (gut) and P3 (muscle and germline) lineages but not others, even though CDC-25.1 and its apparent decay have been detected in all lineages. Our results demonstrate the power of C. elegans embryogenesis as a model to dissect the interaction between differentiation and proliferation, and an effective approach combining genetic and statistical analysis at single-cell resolution.
PMCID: PMC2442716  PMID: 18430415
statistics; single cell; fate differentiation; cdc25; Skp1-related
5.  AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis 
BMC Bioinformatics  2006;7:275.
The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point.
We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data.
By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.
PMCID: PMC1501046  PMID: 16740163

Results 1-5 (5)