Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma 
Nature genetics  2013;45(2):133-135.
Uveal melanoma is the most common primary cancer of the eye and often results in fatal metastasis. Here, we describe mutations occurring exclusively at arginine-625 in splicing factor 3B subunit 1 (SF3B1) in low-grade uveal melanomas with good prognosis. Thus, uveal melanoma is among a small group of cancers associated with SF3B1 mutation, and these mutations denote a distinct molecular subset of uveal melanomas.
PMCID: PMC3789378  PMID: 23313955
2.  CARD14 Expression in Dermal Endothelial Cells in Psoriasis 
PLoS ONE  2014;9(11):e111255.
Mutations in the caspase recruitment domain, family member 14 (CARD14) gene have recently been described in psoriasis patients, and explain the psoriasis susceptibility locus 2 (PSORS2). CARD14 is a scaffolding protein that regulates NF-κB activation, and psoriasis-associated CARD14 mutations lead to enhanced NF-κB signaling. CARD14 is expressed mainly in epidermal keratinocytes, but also in unidentified dermal cells. In this manuscript, the identity of the dermal cell types expressing CARD14, as well the potential functional consequence of overactive CARD14 in these dermal cell types, was determined. Using two-color immunofluorescence, dermal CARD14 did not co-localize with T-cells, dendritic cells, or macrophages. However, dermal CARD14 did highly co-localize with CD31+ endothelial cells (ECs). CARD14 was also expressed non-dermal endothelial cells, such as aortic endothelial cells, which may indicate a role of CARD14+ECs in the systemic inflammation and cardiovascular comorbidities associated with psoriasis. Additionally, phosphorylated NF-κB was found in psoriatic CARD14+ CD31+ ECs, demonstrating this pathway is active in dermal ECs in psoriasis. Transfection of dermal ECs with psoriasis-associated CARD14 mutations resulted in increased expression of several chemokines, including CXCL10, IL-8, and CCL2. These results provide preliminary evidence that CARD14 expression in ECs may contribute to psoriasis through increased expression of chemokines and facilitating recruitment of immune cells into skin.
PMCID: PMC4219711  PMID: 25369198
3.  A subset of methylated CpG sites differentiate psoriatic from normal skin 
The Journal of investigative dermatology  2011;132(3 Pt 1):583-592.
Psoriasis is a chronic inflammatory immune-mediated disorder affecting the skin and other organs including joints. Over 1,300 transcripts are altered in psoriatic involved skin compared to normal skin. However to our knowledge global epigenetic profiling of psoriatic skin is previously unreported. Here we describe a genome-wide study of altered CpG methylation in psoriatic skin. We determined the methylation levels at 27,578 CpG sites in skin samples from individuals with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. CpG methylation of involved skin differed from normal skin at 1,108 sites. Twelve mapped to the epidermal differentiation complex, upstream or within genes that are highly up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially methylated (DM) sites separated psoriatic from normal skin samples. CpG sites where methylation was correlated with gene expression are reported. Sites with inverse correlations between methylation and nearby gene expression include those of KYNU, OAS2, S100A12, and SERPINB3, whose strong transcriptional up-regulation are important discriminators of psoriasis. We observed intrinsic epigenetic differences in uninvolved skin. Pyrosequencing of bisulfite-treated DNA from skin biopsies at three DM loci confirmed earlier findings and revealed reversion of methylation levels towards the non-psoriatic state after one month of anti-TNF-α therapy.
PMCID: PMC3568942  PMID: 22071477
4.  Deletion of the Activating NKG2C Receptor and a Functional Polymorphism in its Ligand HLA-E in Psoriasis Susceptibility 
Experimental dermatology  2013;22(10):10.1111/exd.12233.
Psoriasis is an inflammatory, immune-mediated disease of the skin. Several studies have suggested that natural killer (NK) cells and their receptors may be important for its pathogenesis. Here, we examined whether deletion of the activating natural killer receptor gene NKG2C, which has a frequency of 20% in the European population, was associated with psoriasis susceptibility. The NKG2C deletion and a functional polymorphism in its ligand HLA-E were genotyped in a Caucasian cohort of 611 psoriasis cases and 493 controls. We found that the NKG2C deletion was significantly increased in cases compared to controls (0.258 vs. 0.200, p=0.0012, OR=1.43 [1.15–1.79]). The low-expressing HLA-E*01:01 allele was associated with psoriasis (p=0.0018), although this association was dependent on HLA-C. Our findings support a potential immunoregulatory role for NK cells in psoriasis and suggest the importance of future studies to investigate the contribution of NK cells and their regulatory receptors to the pathogenesis of psoriasis.
PMCID: PMC3813441  PMID: 24079744
Psoriasis; natural killer; NKG2C; KLRC2; HLA-E
5.  Further Genetic Evidence for Three Psoriasis-Risk Genes: ADAM33, CDKAL1, and PTPN22 
Predisposition to psoriasis is known to be affected by genetic variation in HLA-C, IL12B, and IL23R, and although other psoriasis-associated variants have been identified, incontrovertible statistical evidence for these markers has not yet been obtained. To help resolve this issue, we tested 15 single-nucleotide polymorphisms (SNPs) from 7 putative psoriasis-risk genes in 1,448 psoriasis patients and 1,385 control subjects; 3 SNPs, rs597980 in ADAM33, rs6908425 in CDKAL1 and rs3789604 in PTPN22, were significant with the same risk allele as in prior reports (one-sided P<0.05, false discovery rate<0.15). These three markers were tested in a fourth sample set (599 cases and 299 controls); one marker, rs597980, replicated (one-sided P<0.05) and the other two had odds ratios with the same directionality as in the original sample sets. Mantel–Haenszel meta-analyses of all available case–control data, including those published by other groups, showed that these three markers were highly significant (rs597980: P =0.0057 (2,025 cases and 1,597 controls), rs6908425: P =1.57×10−5 (3,206 cases and 4,529 controls), and rs3789604: P =3.45×10−5 (2,823 cases and 4,066 controls)). These data increase the likelihood that ADAM33, CDKAL1, and PTPN22 are true psoriasis-risk genes.
PMCID: PMC4130997  PMID: 18923449
6.  Noncanonical microRNAs and endogenous siRNAs in normal and psoriatic human skin 
Human Molecular Genetics  2012;22(4):737-748.
Noncanonical microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs) are key gene regulators in eukaryotes. Noncanonical miRNAs, which bypass part of the canonical miRNA biogenesis pathway, can originate from a variety of genomic loci, which include small nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs) and introns, whereas endo-siRNAs can arise from repetitive elements, some of which are transposable. The roles of noncanonical miRNAs and endo-siRNAs in complex diseases have yet to be characterized. To investigate their potential expression and function in psoriasis, we carried out a comprehensive, genome-wide search for noncanonical miRNAs and endo-siRNAs in small RNA deep-sequencing data sets from normal and psoriatic human skin. By analyzing more than 670 million qualified reads from 67 small RNA libraries, we identified 21 novel, noncanonical miRNAs (3 snoRNA-derived and 2 tRNA-derived miRNAs and 16 miRtrons) and 39 novel endo-siRNAs that were expressed in skin. The expression of four novel small RNAs was validated by qRT–PCR in human skin, and their Argonaute association was confirmed by co-immunoprecipitation of ectopic small RNAs in HEK293 cells. Fifteen noncanonical miRNAs or endo-siRNAs were significantly differentially expressed in psoriatic-involved versus normal skin, including an Alu-short interspersed element-derived siRNA which was 17-fold up-regulated in psoriatic-involved skin. These and other differentially expressed small noncoding RNAs may function as regulators of gene expression in skin and potentially play a role in psoriasis pathogenesis.
PMCID: PMC3554200  PMID: 23175445
8.  BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma 
BMC Cancer  2013;13:371.
Uveal melanoma is a highly aggressive cancer with a strong propensity for metastasis, yet little is known about the biological mechanisms underlying this metastatic potential. We recently showed that most metastasizing uveal melanomas, which exhibit a class 2 gene expression profile, contain inactivating mutations in the tumor suppressor BAP1. The aim of this study was to investigate the role of BAP1 in uveal melanoma progression.
Uveal melanoma cells were studied following RNAi-mediated depletion of BAP1 using proliferation, BrdU incorporation, flow cytometry, migration, invasion, differentiation and clonogenic assays, as well as in vivo tumorigenicity experiments in NOD-SCID-Gamma mice.
Depletion of BAP1 in uveal melanoma cells resulted in a loss of differentiation and gain of stem-like properties, including expression of stem cell markers, increased capacity for self-replication, and enhanced ability to grow in stem cell conditions. BAP1 depletion did not result in increased proliferation, migration, invasion or tumorigenicity.
BAP1 appears to function in the uveal melanocyte lineage primarily as a regulator of differentiation, with cells deficient for BAP1 exhibiting stem-like qualities. It will be important to elucidate how this effect of BAP1 loss promotes metastasis and how to reverse this effect therapeutically.
PMCID: PMC3846494  PMID: 23915344
BAP1; Uveal melanoma; Differentiation; Stem cell; Metastasis; Tumor suppressor
9.  Identification of fifteen new psoriasis susceptibility loci highlights the role of innate immunity 
Nature genetics  2012;44(12):1341-1348.
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of three genome-wide association studies (GWAS) and two independent datasets genotyped on the Immunochip, involving 10,588 cases and 22,806 controls in total. We identified 15 new disease susceptibility regions, increasing the number of psoriasis-associated loci to 36 for Caucasians. Conditional analyses identified five independent signals within previously known loci. The newly identified shared disease regions encompassed a number of genes whose products regulate T-cell function (e.g. RUNX3, TAGAP and STAT3). The new psoriasis-specific regions were notable for candidate genes whose products are involved in innate host defense, encoding proteins with roles in interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C), and NF-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.
PMCID: PMC3510312  PMID: 23143594
10.  Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma 
Clinical Cancer Research  2011;18(2):408-416.
Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM.
Experimental Design
In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model.
HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo.
These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM.
PMCID: PMC3261307  PMID: 22038994
BAP1; differentiation; eye; HDAC inhibitor; metastasis; uveal melanoma; valproic acid
11.  Protective Effect of Human Endogenous Retrovirus K dUTPase Variants on Psoriasis Susceptibility 
Previous genetic and functional studies have implicated the human endogenous retrovirus K (HERV-K) dUTPase located within the PSORS1 locus in the MHC region as a candidate psoriasis gene. Here, we describe a variant discovery and case-control association study of HERV-K dUTPase variants in 708 psoriasis cases and 349 healthy controls. Five common HERV-K dUTPase variants were found to be highly associated with psoriasis, with the strongest association occurring at the missense SNP rs3134774 (K158R, p=3.28 × 10-15, OR=2.36 [1.91-2.92]). After adjusting the association of the HERV-K dUTPase variants for the potential confounding effects of HLA alleles associated with psoriasis, the HERV-K SNPs rs9264082 and rs3134774 remained significantly associated. Haplotype analysis revealed that HERV-K haplotypes containing the non-risk alleles for rs3134774 and rs9264082 significantly reduced the risk of psoriasis. Functional testing showed higher antibody responses against recombinant HERV-K dUTPase in psoriasis patients compared to controls (p<0.05), as well as higher T-cell responses against a single HERV-K dUTPase peptide (p<0.05). Our data support an independent role for the HERV-K dUTPase on psoriasis susceptibility, and suggest the need for additional studies to clarify the role of this dUTPase in the pathogenesis of psoriasis.
PMCID: PMC3375357  PMID: 22437317
12.  Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome 
Human Molecular Genetics  2011;20(20):4025-4040.
Psoriasis is a chronic and complex inflammatory skin disease with lesions displaying dramatically altered mRNA expression profiles. However, much less is known about the expression of small RNAs. Here, we describe a comprehensive analysis of the normal and psoriatic skin miRNAome with next-generation sequencing in a large patient cohort. We generated 6.7 × 108 small RNA reads representing 717 known and 284 putative novel microRNAs (miRNAs). We also observed widespread expression of isomiRs and miRNA*s derived from known and novel miRNA loci, and a low frequency of miRNA editing in normal and psoriatic skin. The expression and processing of selected novel miRNAs were confirmed with qRT-PCR in skin and other human tissues or cell lines. Eighty known and 18 novel miRNAs were 2–42-fold differentially expressed in psoriatic skin. Of particular significance was the 2.7-fold upregulation of a validated novel miRNA derived from the antisense strand of the miR-203 locus, which plays a role in epithelial differentiation. Other differentially expressed miRNAs included hematopoietic-specific miRNAs such as miR-142-3p and miR-223/223*, and angiogenic miRNAs such as miR-21, miR-378, miR-100 and miR-31, which was the most highly upregulated miRNA in psoriatic skin. The functions of these miRNAs are consistent with the inflammatory and hyperproliferative phenotype of psoriatic lesions. In situ hybridization of differentially expressed miRNAs revealed stratified epidermal expression of an uncharacterized keratinocyte-derived miRNA, miR-135b, as well as the epidermal infiltration of the hematopoietic-specific miRNA, miR-142-3p, in psoriatic lesions. This study lays a critical framework for functional characterization of miRNAs in healthy and diseased skin.
PMCID: PMC3177648  PMID: 21807764
13.  Genome-wide meta-analysis of Psoriatic Arthritis Identifies Susceptibility Locus at REL 
Psoriatic arthritis (PsA) is a chronic inflammatory musculoskeletal disease affecting up to 30% of psoriasis vulgaris (PsV) cases and approximately 0.25% to 1% of the general population. To identify common susceptibility loci, we performed a meta-analysis of three imputed genome-wide association studies (GWAS) on psoriasis, stratified for PsA. A total of 1,160,703 SNPs were analyzed in the discovery set consisting of 535 PsA cases and 3,432 controls from Germany, the United States and Canada. We followed up two SNPs in 1,931 PsA cases and 6,785 controls comprising six independent replication panels from Germany, Estonia, the United States and Canada. In the combined analysis, a genome-wide significant association was detected at 2p16 near the REL locus encoding c-Rel (rs13017599, P=1.18×10−8, OR=1.27, 95% CI=1.18–1.35). The rs13017599 polymorphism is known to associate with rheumatoid arthritis (RA), and another SNP near REL (rs702873) was recently implicated in PsV susceptibility. However, conditional analysis indicated that rs13017599, rather than rs702873, accounts for the PsA association at REL. We hypothesize that c-Rel, as a member of the Rel/NF-κB family, is associated with PsA in the context of disease pathways that involve other identified PsA and PsV susceptibility genes including TNIP1, TNFAIP3 and NFκBIA.
PMCID: PMC3305829  PMID: 22170493
14.  Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease 
PLoS Genetics  2012;8(2):e1002514.
An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis.
Author Summary
Individuals with autoimmune disease generally demonstrate excessive immune system activation, leading to inflammation and damage of specific target organs. However, in some cases the detrimental effects of an overactive immune system might be counterbalanced by a beneficial effect in protecting against certain infections. In this study, we investigated whether patients with psoriasis, a common autoimmune disease of the skin, harbor genetic variants that are associated with an enhanced ability to limit replication of the HIV-1 virus. We profiled the HLA (human leukocyte antigen) immune genes located on chromosome 6 in 1,727 Caucasian psoriasis cases and 3,581 healthy controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. We found that this enrichment for HIV-1 protective variants was unique to psoriasis and largely absent in patients with other autoimmune or inflammatory diseases such as rheumatoid arthritis, Crohn's disease, type 1 diabetes, type 2 diabetes, and coronary artery disease. Our results suggest the possibility that the excessive skin inflammation in psoriasis may be associated with activation of anti-viral immune pathways that were important to human ancestors who encountered viruses similar to HIV-1.
PMCID: PMC3343879  PMID: 22577363
15.  Psoriasis genetics: breaking the barrier 
Trends in genetics : TIG  2010;26(9):415-423.
Psoriasis is a common incurable inflammatory skin disease affecting 2–3% of the European population. Psoriatic skin contains large numbers of immune cells which produce many cytokines, chemokines and inflammatory molecules. The epidermis divides much faster than normal and has a defective outer layer or barrier which under normal circumstances protects from infection and dehydration. Psoriatic skin is characterized by a distinct set of inflammation and epidermal proliferation and differentiation markers, and it has not been clear if the genetic basis of psoriasis is due to defects of the immune system or the skin. One genetic determinant lies within the major histocompatibility complex class 1 region. Genome-wide association studies have revealed genetic susceptibility factors that play a role in the formation of immune cells found in psoriasis lesions. Others affect epidermal proliferation and the formation of the skin’s barrier. Hence, genetic components of both the immune system and the epidermis predispose to disease.
PMCID: PMC2957827  PMID: 20692714
16.  Association analyses identify six new psoriasis susceptibility loci in the Chinese population 
Nature genetics  2010;42(11):1005-1009.
We extended our previous GWAS for psoriasis with a a multistage replication study including 8,312 cases and 12,919 controls from China as well as 3,293 cases, 4,188 controls from Germany and the USA, and 254 nuclear families from the USA. We identified 6 new susceptibility loci associated to psoriasis in Chinese, containing candidate genes ERAP1, PTTG1, CSMD1, GJB2, SERPINB8, ZNF816A (PCombined<5×10−8) and replicated one locus 5q33.1 (TNIP1/ANXA6) previously reported (PCombined=3.8×10−21) in European studies. Two of these loci showed evidence for association evidence in the German study, at ZNF816A and GJB2 with P=3.6×10−3 and P=7.9×10−3, respectively. ERAP1 and ZNF816A were preferentially associated with Type I (early onset) psoriasis in Chinese Han population (test for heterogeneity P=6.5×10−3 and P=1.5×10−3, respectively). Comparisons with previous GWAS of psoriasis highlight the heterogeneity of disease susceptibility between Chinese and European populations. Our study identifies new genetic susceptibility factors and suggests new biological pathways in psoriasis.
PMCID: PMC3140436  PMID: 20953187
17.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas 
Science (New York, N.Y.)  2010;330(6009):1410-1413.
Metastasis is a defining feature of malignant tumors and is the most common cause of cancer-related death, yet the genetics of metastasis are poorly understood. We used massively parallel exome sequencing coupled with Sanger re-sequencing to search for metastasis-related mutations in highly metastatic uveal melanomas of the eye. Inactivating somatic mutations were identified in the gene encoding BRCA1-associated protein 1 (BAP1) on chromosome 3p21.1 in 26 of 31 (84%) metastasizing tumors, including 15 mutations causing premature protein termination, and six affecting its ubiquitin carboxy-terminal hydrolase (UCH) domains. One tumor harbored a frameshift mutation that was germline in origin, thus representing a susceptibility allele. These findings implicate loss of BAP1 in uveal melanoma metastasis and suggest the BAP1 pathway as a therapeutic target.
PMCID: PMC3087380  PMID: 21051595
18.  Primary ciliary dyskinesia in Amish communities 
The Journal of pediatrics  2010;156(6):1023-1025.
Primary ciliary dyskinesia (PCD) is an autosomal recessive multigenic disease that results in impaired mucociliary clearance. We have diagnosed 9 subjects with primary ciliary dyskinesia from geographically dispersed Amish communities, based on clinical characteristics and ciliary ultrastructural defects. Despite consanguinity, affected individuals had evidence of genetic heterogeneity.
PMCID: PMC2875274  PMID: 20350728
Primary ciliary dyskinesia; cilia; dynein; nitric oxide; Amish
19.  Genome-wide association analysis identifies three psoriasis susceptibility loci 
Nature genetics  2010;42(11):1000-1004.
To identify novel psoriasis susceptibility loci, we carried out a meta-analysis of two recent genome-wide association studies 1,2, yielding a discovery sample of 1,831 cases and 2,546 controls. 102 of the most promising loci in the discovery analysis were followed up in a three-stage replication study using 4,064 cases and 4,685 controls from Michigan, Toronto, Newfoundland, and Germany. Association at a genome-wide level of significance for the combined discovery and replication samples was found for three genomic regions. One contains NOS2 (rs4795067, p = 4 × 10−11), another contains FBXL19 (rs10782001, p = 9 × 10−10), and a third contains PSMA6 and NFKBIA (rs12586317, p = 2 × 10−8). All three loci were also strongly associated with the subphenotypes of psoriatic arthritis and purely cutaneous psoriasis. Finally, we confirmed a recently identified3 association signal near RNF114.
PMCID: PMC2965799  PMID: 20953189
20.  A Genetic Risk Score Combining Ten Psoriasis Risk Loci Improves Disease Prediction 
PLoS ONE  2011;6(4):e19454.
Psoriasis is a chronic, immune-mediated skin disease affecting 2–3% of Caucasians. Recent genetic association studies have identified multiple psoriasis risk loci; however, most of these loci contribute only modestly to disease risk. In this study, we investigated whether a genetic risk score (GRS) combining multiple loci could improve psoriasis prediction. Two approaches were used: a simple risk alleles count (cGRS) and a weighted (wGRS) approach. Ten psoriasis risk SNPs were genotyped in 2815 case-control samples and 858 family samples. We found that the total number of risk alleles in the cases was significantly higher than in controls, mean 13.16 (SD 1.7) versus 12.09 (SD 1.8), p = 4.577×10−40. The wGRS captured considerably more risk than any SNP considered alone, with a psoriasis OR for high-low wGRS quartiles of 10.55 (95% CI 7.63–14.57), p = 2.010×10−65. To compare the discriminatory ability of the GRS models, receiver operating characteristic curves were used to calculate the area under the curve (AUC). The AUC for wGRS was significantly greater than for cGRS (72.0% versus 66.5%, p = 2.13×10−8). Additionally, the AUC for HLA-C alone (rs10484554) was equivalent to the AUC for all nine other risk loci combined (66.2% versus 63.8%, p = 0.18), highlighting the dominance of HLA-C as a risk locus. Logistic regression revealed that the wGRS was significantly associated with two subphenotypes of psoriasis, age of onset (p = 4.91×10−6) and family history (p = 0.020). Using a liability threshold model, we estimated that the 10 risk loci account for only11.6% of the genetic variance in psoriasis. In summary, we found that a GRS combining 10 psoriasis risk loci captured significantly more risk than any individual SNP and was associated with early onset of disease and a positive family history. Notably, only a small fraction of psoriasis heritability is captured by the common risk variants identified to date.
PMCID: PMC3084857  PMID: 21559375
22.  New insights into the pathogenesis and genetics of psoriatic arthritis 
Psoriasis (PS) and psoriatic arthritis (PSA) are inter-related heritable diseases. Psoriatic skin is characterized by hyperproliferative, poorly differentiated keratinocytes and robust mononuclear inflammation. Psoriatic joints are characterized by highly inflamed synovia and entheses with focal erosions of cartilage and bone. Recent genetic analyses have uncovered risk factors shared by both PS and PsA. With respect to common variation, the HLA class I region is the locus that predisposes most strongly to PS and PsA. Other risk factors implicate the IL23 pathway and the induction/regulation of Th17 cells in the pathogenesis of both diseases. Elaboration by cytokines such as IL22 and IL could result in the hyper-proliferative phenotype of keratinocytes and potentially synoviocytes, leading to the vicious cycle of proliferation/inflammation in both the skin and joints. In synovial tissue, disease-related cytokines may also lead to RANK ligand dependent osteoclast formation leading to bone erosion. Genetic risk factors leading specifically to PsA need to be identified. Therapies targeting TNF have frequently been highly successful in the treatment of both diseases, and genetic findings are likely to lead to the development of additional treatments tailored to an individual’s genetic profile.
PMCID: PMC2790861  PMID: 19182814
23.  Oncogenic mutations in GNAQ occur early in uveal melanoma 
Early/initiating oncogenic mutations have been identified for many cancers, but such mutations remain unidentified in uveal melanoma (UM). An extensive search for such mutations was undertaken, focusing on the RAF/MEK/ERK pathway, which is often the target of initiating mutations in other types of cancer.
DNA samples from primary UMs were analyzed for mutations in 24 potential oncogenes that affect the RAF/MEK/ERK pathway. For GNAQ, a stimulatory αq G-protein subunit which was recently found to be mutated in uveal melanomas, re-sequencing was expanded to include 67 primary UMs and 22 peripheral blood samples. GNAQ status was analyzed for association with clinical, pathologic, chromosomal, immunohistochemical and transcriptional features.
Activating mutations at codon 209 were identified in GNAQ in 33/67 (49%) primary UMs, including 2/9 (22%) iris melanomas and 31/58 (54%) posterior UMs. No mutations were found in the other 23 potential oncogenes. GNAQ mutations were not found in normal blood DNA samples. Consistent with GNAQ mutation being an early or initiating event, this mutation was not associated with any clinical, pathologic or molecular features associated with late tumor progression.
GNAQ mutations occur in about half of UMs, representing the most common known oncogenic mutation in this cancer. The presence of this mutation in tumors at all stages of malignant progression suggests that it is an early event in UM. Mutations in this G-protein provide new insights into UM pathogenesis and could lead to new therapeutic possibilities.
PMCID: PMC2634606  PMID: 18719078
uveal melanoma; oncogene; mutation; cancer genetics
25.  Genomewide Scan Reveals Association of Psoriasis with IL-23 and NF-κB Pathways 
Nature genetics  2009;41(2):199-204.
Psoriasis is a common immune mediated disorder that affects the skin, nails, and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 European ancestry psoriasis cases and 1,436 controls. Twenty-one promising SNPs were followed-up in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with p < 5×10−8 overall). Loci with confirmed association encode HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-α and regulate NF-κB signaling (TNIP1, TNFAIP3), and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.
PMCID: PMC2745122  PMID: 19169254

Results 1-25 (30)