PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (704)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Cathepsin L Plays a Role in Quinolinic Acid-Induced NF-Κb Activation and Excitotoxicity in Rat Striatal Neurons 
PLoS ONE  2013;8(9):e75702.
The present study seeks to investigate the role of cathepsin L in glutamate receptor-induced transcription factor nuclear factor-kappa B (NF-κB) activation and excitotoxicity in rats striatal neurons. Stereotaxic administration of the N-methyl-d-aspartate (NMDA) receptor agonist Quinolinic acid (QA) into the unilateral striatum was used to produce the in vivo excitotoxic model. Co-administration of QA and the cathepsin L inhibitor Z-FF-FMK or 1-Naphthalenesulfonyl-IW-CHO (NaphthaCHO) was used to assess the contribution of cathepsin L to QA-induced striatal neuron death. Western blot analysis and cathepsin L activity assay were used to assess the changes in the levels of cathepsin L after QA treatment. Western blot analysis was used to assess the changes in the protein levels of inhibitor of NF-κB alpha isoform (IκB-α) and phospho-IκB alpha (p-IκBα) after QA treatment. Immunohistochemical analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced NF-κB. Western blot analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced IκB-α phosphorylation and degradation, changes in the levels of IKKα, p-IKKα, TP53, caspase-3, beclin1, p62, and LC3II/LC3I. The results show that QA-induced loss of striatal neurons were strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced degradation of IκB-α, NF-κB nuclear translocation, up-regulation of NF-κB responsive gene TP53, and activation of caspase-3 was strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced increases in beclin 1, LC3II/LC3I, and down-regulation of p62 were reduced by Z-FF-FMK or NaphthaCHO. These results suggest that cathepsin L is involved in glutamate receptor-induced NF-κB activation. Cathepsin L inhibitors have neuroprotective effects by inhibiting glutamate receptor-induced IκB-α degradation and NF-κB activation.
doi:10.1371/journal.pone.0075702
PMCID: PMC3779166  PMID: 24073275
2.  Differential expression and subcellular localization of Prohibitin 1 are related to tumorigenesis and progression of non-small cell lung cancer 
Lung cancer remains the leading cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer. With a variety of biological functions, Prohibitin1 (PHB1) has been proved tumor-associated. But there are conflicting data regarding the involvement of PHB1 in tumorigenesis and few studies regarding the role of PHB1 in lung cancer. The studies reported herein used a combination of clinical observations and molecular methods to investigate the possible role of PHB1 in NSCLC tissues and cell lines. PHB1 expression was evaluated by RT-PCR, RT-qPCR, Western blotting and immunohistochemistry analysis. Flow cytometric analysis was used to determine the surface expression profiles of PHB1 in lung cell lines. The results showed that PHB1 expression were generally increased in lung cancer tissues when compared with matched noncancerous tissues and closely related with tumor differentiation and lymph node invasion. PHB1 expression levels was also increased in three lung cancer cell lines (SK-MES-1, NCI-H157 and NCI-H292) as compared with BEAS-2B cells. Moreover, there were various subcellular localization of PHB1 in different lung cancer cells and the presence of PHB1 on the surface of lung cancer cells was significantly reduced. In conclusion, PHB1 expression is increased in NSCLC and the up-regulation of PHB1 is associated with clinically aggressive phenotype. The different subcellular localization of PHB1 in NSCLC cells and the loss of the membrane-associated PHB1 probably related to the tumorigenesis and progression of NSCLC and suggests that PHB1 may play different roles in various types of NSCLC.
PMCID: PMC3796231  PMID: 24133587
Prohibitin 1; up-regulation; subcellular localization; non-small cell lung cancer
3.  Treatment of radiation-induced hemorrhagic gastritis with prednisolone: A case report 
Radiation-induced gastritis is an infrequent cause of gastrointestinal bleeding. It is a serious complication arising from radiation therapy, and the standard treatment method has not been established. The initial injury is characteristically acute inflammation of gastric mucosa. We presented a 46-year-old male patient with hemorrhagic gastritis induced by external radiotherapy for metastatic retroperitoneal lymph node of hepatocellular carcinoma. The endoscopic examination showed diffuse edematous hyperemicmucosa with telangiectasias in the whole muscosa of the stomach and duodenal bulb. Multiple hemorrhagic patches with active oozing were found over the antrum. Anti-secretary therapy was initiated for hemostasis, but melena still occurred off and on. Finally, he was successfully treated by prednisolone therapy. We therefore strongly argue in favor of perdnisolone therapy to effectively treat patients with radiation-induced hemorrhagic gastritis.
doi:10.3748/wjg.v18.i48.7402
PMCID: PMC3544049  PMID: 23326152
Hemorrhagic gastritis; Radiation; Prednisolone; Hepatocellular carcinoma; Gastrointestinal bleeding
4.  The Baculovirus Core Gene ac83 Is Required for Nucleocapsid Assembly and Per Os Infectivity of Autographa californica Nucleopolyhedrovirus 
Journal of Virology  2013;87(19):10573-10586.
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.
doi:10.1128/JVI.01207-13
PMCID: PMC3807414  PMID: 23864639
5.  Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition 
Scientific Reports  2014;4:4537.
A simply and reproducible way is proposed to significantly suppress the nucleation density of graphene on the copper foil during the chemical vapor deposition process. By inserting a copper foil into a tube with one close end, the nucleation density on the copper foils can be reduced by more than five orders of magnitude and an ultra-low nucleation density of ~10 nucleus/cm2 has been achieved. The structural analyses demonstrate that single crystal monolayer graphene with a lateral size of 1.9 mm can be grown on the copper foils under the optimized growth condition. The electrical transport studies show that the mobility of such single crystal graphene is around 2400 cm2/Vs.
doi:10.1038/srep04537
PMCID: PMC3971397  PMID: 24686949
6.  Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease 
Disease Models & Mechanisms  2014;7(4):411-419.
The classical form of α1-antitrypsin deficiency (ATD) is an autosomal co-dominant disorder that affects ~1 in 3000 live births and is an important genetic cause of lung and liver disease. The protein affected, α1-antitrypsin (AT), is predominantly derived from the liver and has the function of inhibiting neutrophil elastase and several other destructive neutrophil proteinases. The genetic defect is a point mutation that leads to misfolding of the mutant protein, which is referred to as α1-antitrypsin Z (ATZ). Because of its misfolding, ATZ is unable to efficiently traverse the secretory pathway. Accumulation of ATZ in the endoplasmic reticulum of liver cells has a gain-of-function proteotoxic effect on the liver, resulting in fibrosis, cirrhosis and/or hepatocellular carcinoma in some individuals. Moreover, because of reduced secretion, there is a lack of anti-proteinase activity in the lung, which allows neutrophil proteases to destroy the connective tissue matrix and cause chronic obstructive pulmonary disease (COPD) by loss of function. Wide variation in the incidence and severity of liver and lung disease among individuals with ATD has made this disease one of the most challenging of the rare genetic disorders to diagnose and treat. Other than cigarette smoking, which worsens COPD in ATD, genetic and environmental modifiers that determine this phenotypic variability are unknown. A limited number of therapeutic strategies are currently available, and liver transplantation is the only treatment for severe liver disease. Although replacement therapy with purified AT corrects the loss of anti-proteinase function, COPD progresses in a substantial number of individuals with ATD and some undergo lung transplantation. Nevertheless, advances in understanding the variability in clinical phenotype and in developing novel therapeutic concepts is beginning to address the major clinical challenges of this mysterious disorder.
doi:10.1242/dmm.014092
PMCID: PMC3974452
α1-antitrypsin deficiency; Autophagy; Liver disease
7.  Alterations in HIV-1 gp120 V3 Region Are Necessary but Not Sufficient for Coreceptor Switching in CRF07_BC in China 
PLoS ONE  2014;9(3):e93426.
The most predominant HIV-1 strains in China's current epidemic is the Circulating Recombinant Form 07_BC (CRF07_BC). CRF07_BC is mainly considered as a CCR5-tropic (R5) virus, since CXCR4-tropic (X4) viruses have thus far not been found in this subtype, and the molecular determinants of coreceptor switching remain unknown. To investigate the mechanisms underlying coreceptor requirement in CRF07_BC viruses, we characterized a panel of pNL4-3-based chimeric viruses with mutated V3 loop regions derived from an HIV-1 CRF07_BC infectious clone pXJDC13. Among 17 chimeric viruses, seven were dual-tropic and induced syncytium formation in MT-2 cells. Two amino acid insertions between positions 13 and 14, as well as arginine substitution at position 11 or 16 (IG insertion and P16R mutation or MG insertion and S11R mutation), conferred the chimeric viruses CXCR4-tropic features, which were same as subtype C X4 viruses. Next, to construct CRF07_BC X4 variants, mutated V3 loops were cloned into the CRF07_BC infectious clone pXJDC13. These V3 loops, which in the pNL4-3 backbone conferred chimeric viruses with CXCR4-using ability, abrogated infectivity completely in the CRF07_BC pXJDC13 genetic background. Similarly, IG insertion or MG insertion and S11R mutation dramatically diminished or completely abolished viral infectivity in other envelopes of subtype C or CRF07_BC. These results suggest that the effects of IG insertion and P16R mutation or MG insertion and S11R mutation on CXCR4 usage are context dependent, and additional mutations elsewhere in the envelope are needed to compensate for these fitness-reducing alterations.
doi:10.1371/journal.pone.0093426
PMCID: PMC3968174  PMID: 24676404
8.  Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin 
Scientific Reports  2014;4:4416.
To study the mechanism of tea polyphenols (TP)-induced apoptosis of breast cancer cells. Proliferation of MCF-7 and SK-BR-3 cells was evaluated by MTT assays. Cellular ultrastructure was examined by electron microscopy. Apoptosis was detected by TUNEL. PCNA、 Cyclin D1、 Cyclin E and Survivin expression was measured by Western blot. Cell proliferation was significantly inhibited by TP. Spindle and round cells were loosely distributed with increased particles after TP treatment. Increased cell size, frequent nuclear atypia and a collapse of apoptosis were observed. The nucleus was pushed towards one side, while the cytoplasm was rich in free ribosome. The membrane of mitochondria was thickening, and the cell apoptotic body was observed. TP treated cells experienced significantly enhanced apoptosis compared with 5-Fu treated or control groups. The expression of survivin was downregulated by TP. To conclude, TP can inhibit cell growth and induce apoptosis through downregulating the expression of survivin in breast cancer.
doi:10.1038/srep04416
PMCID: PMC3960584  PMID: 24646833
9.  Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum 
PLoS ONE  2014;9(3):e92486.
Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P≤0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.
doi:10.1371/journal.pone.0092486
PMCID: PMC3961383  PMID: 24651513
10.  Maintenance of Stemness in Oxaliplatin-Resistant Hepatocellular Carcinoma Is Associated with Increased Autocrine of IGF1 
PLoS ONE  2014;9(3):e89686.
Background
Evidence suggests that many types of cancers are composed of different cell types, including cancer stem cells (CSCs). We have previously shown that the chemotherapeutic agent oxaliplatin induced epithelial-mesenchymal transition, which is thought to be an important mechanism for generating CSCs. In the present study, we investigate whether oxaliplatin-treated cancer tissues possess characteristics of CSCs, and explore oxaliplatin resistance in these tissues.
Methods
Hepatocellular carcinoma cells (MHCC97H cells) were subcutaneously injected into mice to form tumors, and the mice were intravenously treated with either oxaliplatin or glucose. Five weeks later, the tumors were orthotopically xenografted into livers of other mice, and these mice were treated with either oxaliplatin or glucose. Metastatic potential, sensitivity to oxaliplatin, and expression of CSC-related markers in the xenografted tumor tissues were evaluated. DNA microarrays were used to measure changes in gene expression as a result of oxaliplatin treatment. Additionally, an oxaliplatin-resistant cell line (MHCC97H-OXA) was established to assess insulin-like growth factor 1 secretion, cell invasion, cell colony formation, oxaliplatin sensitivity, and expression of CSC-related markers. The effects of an insulin-like growth factor 1 receptor inhibitor were also assessed.
Results
Oxaliplatin treatment inhibited subcutaneous tumor growth. Tumors from oxaliplatin-treated mice that were subsequently xenografted into livers of other mice exhibited that decreasing sensitivity to oxaliplatin and increasing pulmonary metastatic potential. Among the expression of CSC-related proteins, the gene for insulin-like growth factor 1, was up-regulated expecially in these tumor tissues. Additionally, MHCC97H-OXA cells demonstrated that increasing cell invasion, colony formation, and expression of insulin-like growth factor 1 and CSC-related markers, whereas treatment with an inhibitor of the insulin-like growth factor 1 receptor suppressed these effects.
Conclusion
Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma cells is associated with increased autocrine of IGF1.
doi:10.1371/journal.pone.0089686
PMCID: PMC3954560  PMID: 24632571
11.  The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages 
eLife  2014;3:e01906.
The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progenitors (INPs) is unrestrained. Here, we demonstrate that Drosophila SWI/SNF chromatin remodeling Brahma (Brm) complex functions cooperatively with another chromatin remodeling factor, Histone deacetylase 3 (HDAC3) to suppress the formation of ectopic type II neuroblasts. We show that multiple components of the Brm complex and HDAC3 physically associate with Earmuff (Erm), a type II-specific transcription factor that prevents dedifferentiation of INPs into neuroblasts. Consistently, the predicted Erm-binding motif is present in most of known binding loci of Brm. Furthermore, brm and hdac3 genetically interact with erm to prevent type II neuroblast overgrowth. Thus, the Brm-HDAC3-Erm repressor complex suppresses dedifferentiation of INPs back into type II neuroblasts.
DOI: http://dx.doi.org/10.7554/eLife.01906.001
eLife digest
Stem cells show great promise for repairing damaged tissue, and maybe even generating new organs, but stem cell therapies will only be successful if researchers can understand and control the behaviour of stem cells in the lab. Neural stem cells or ‘neuroblasts’ from the brains of larval fruit flies have become a popular model for studying these processes, and one type of neuroblast—known as a ‘type II’ neuroblast—is similar to mammalian neural stem cells in many ways.
When type II neuroblasts divide, they generate another neuroblast and a second cell called an intermediate neural progenitor (INP) cell. This progenitor cell then matures and undergoes a limited number of divisions to generate more INP cells and cells called ganglion mother cells. The process by which stem cells and INP cells become specific types of cells is known as differentiation. However, under certain circumstances, the INP cells can undergo the opposite process, which is called dedifferentiation, and become ‘ectopic neuroblasts’. This can give rise to tumors, so cells must employ a mechanism to prevent dedifferentiation. Researchers have known that a protein specifically expressed in INP cells called Earmuff is involved in this process, but many of the details have remained hidden.
Now, Koe et al. have discovered that a multi-protein complex containing Earmuff and a number of other proteins—Brahma and HDAC3—have important roles in preventing dedifferentiation. All three proteins are involved in different aspects of gene expression: Earmuff is a transcription factor that controls the process by which the genes in DNA are transcribed to make molecules of messenger RNA; Brahma and HDAC3 are both involved in a process called chromatin remodeling. The DNA inside cells is packaged into a compact structure known as chromatin, and chromatin remodeling involves partially unpacking this structure so that transcription factors and other proteins can have access to the DNA.
Koe et al. also showed that Earmuff, Brahma and HDAC3 combine to form a complex that prevents dedifferentiation. An immediate priority is to identify those genes whose expression is regulated by this complex in order to prevent dedifferentiation.
DOI: http://dx.doi.org/10.7554/eLife.01906.002
doi:10.7554/eLife.01906
PMCID: PMC3944433  PMID: 24618901
neuroblast; self-renewal; differentiation; dedifferentiation; intermediate neural progenitor; Drosophila; D. melanogaster
12.  Effect of Low Level Laser Therapy on Chronic Compression of the Dorsal Root Ganglion 
PLoS ONE  2014;9(3):e89894.
Dorsal root ganglia (DRG) are vulnerable to physical injury of the intervertebral foramen, and chronic compression of the DRG (CCD) an result in nerve root damage with persistent morbidity. The purpose of this study was to evaluate the effects of low level laser therapy (LLLT) on the DRG in a CCD model and to determine the mechanisms underlying these effects. CCD rats had L-shaped stainless-steel rods inserted into the fourth and fifth lumbar intervertebral foramen, and the rats were then subjected to 0 or 8 J/cm2 LLLT for 8 consecutive days following CCD surgery. Pain and heat stimuli were applied to test for hyperalgesia following CCD. The levels of TNF-α, IL-1β and growth-associated protein-43 (GAP-43) messenger RNA (mRNA) expression were measured via real-time PCR, and protein expression levels were analyzed through immunohistochemical analyses. Our data indicate that LLLT significantly decreased the tolerable sensitivity to pain and heat stimuli in the CCD groups. The expression levels of the pro-inflammatory cytokines TNF-α and IL-1β were increased following CCD, and we found that these increases could be reduced by the application of LLLT. Furthermore, the expression of GAP-43 was enhanced by LLLT. In conclusion, LLLT was able to enhance neural regeneration in rats following CCD and improve rat ambulatory behavior. The therapeutic effects of LLLT on the DRG during CCD may be exerted through suppression of the inflammatory response and induction of neuronal repair genes. These results suggest potential clinical applications for LLLT in the treatment of compression-induced neuronal disorders.
doi:10.1371/journal.pone.0089894
PMCID: PMC3942382  PMID: 24594641
13.  Sequential Isolation in a Patient of Raoultella planticola and Escherichia coli Bearing a Novel ISCR1 Element Carrying blaNDM-1 
PLoS ONE  2014;9(3):e89893.
Background
The gene for New Delhi metallo-β-lactamase 1 (NDM-1) has been reported to be transmitted via plasmids which are easily transferable and capable of wide distribution. We report the isolation of two NDM-1 producing strains and possible in vivo transfer of blaNDM-1 in a patient.
Methods
Clinical samples were collected for bacterial culture and antibiotic susceptibility testing from a patient during a 34-day hospitalization. The presence of blaNDM-1 was detected by PCR and sequencing. Plasmids of interest were sequenced. Medical records were reviewed for evidence of association between the administration of antibiotics and the acquisition of the NDM-1 resistance.
Results
A NDM-1 positive Raoultella planticola was isolated from blood on the ninth day of hospitalization without administration of any carbapenem antibiotics and a NDM-1 positive Escherichia coli was isolated from feces on the 29th day of hospitalization and eight days after imipenem administration. The blaNDM-1 was carried by a 280 kb plasmid pRpNDM1-1 in R. planticola and a 58 kb plasmid pEcNDM1-4 in E. coli. The two plasmids shared a 4812 bp NDM-1-ISCR1 element which was found to be excisable from the plasmid as a free form and transferrable in vitro to a NDM-1 negative plasmid from E. coli.
Conclusion
blaNDM-1 was embedded in an ISCR1 complex class 1 integron as a novel 4812 bp NDM-1-ISCR1 element. The element was found to be able to self excise to become a free form, which may provide a new vehicle for NDM-1 dissemination. This mechanism could greatly accelerate the spread of NDM-1 mediated broad spectrum β-lactam resistance.
doi:10.1371/journal.pone.0089893
PMCID: PMC3940617  PMID: 24594606
14.  Scaffolds for Tympanic Membrane Regeneration in Rats 
Tissue Engineering. Part A  2012;19(5-6):657-668.
Tympanic membrane (TM) perforations lead to significant hearing loss and result in possible infection of the middle ear. Myringoplasty is commonly performed to repair chronic perforations. Although various grafts and materials have been used to promote TM regeneration, all have associated limitations. The aim of this study was to evaluate the efficacy and feasibility of two graft materials, silk fibroin scaffold (SFS) and porcine-derived acellular collagen type I/III scaffold (ACS), compared with two commonly used graft materials (paper patch and Gelfoam) for the promotion of TM regeneration. These scaffolds were implanted using on-lay myringoplasty in an acute TM perforation rat model. Surface morphology of the scaffolds was observed with scanning electron microscopy. The morphology of the TM was assessed at various time points postimplantation using otoscopy, light and electron microscopy, and functional outcomes by auditory brainstem responses. We found that SFS and ACS significantly accelerated the TM perforation closure, obtained optimal TM thickness, and resulted in better trilaminar morphology with well-organized collagen fibers and early restoration of hearing. However, paper patch and Gelfoam lost their scaffold function in the early stages and showed an inflammatory response, which may have contributed to delayed healing. This study indicates that compared with paper patch and Gelfoam, SFS and ACS are more effective in promoting an early TM regeneration and an improved hearing, suggesting that these scaffolds may be potential substitutes for clinical use.
doi:10.1089/ten.tea.2012.0053
PMCID: PMC3566677  PMID: 23092139
15.  Enhancing the Sensitivity of Needle-Implantable Electrochemical Glucose Sensors via Surface Rebuilding 
Background
Needle-implantable sensors have shown to provide reliable continuous glucose monitoring for diabetes management. In order to reduce tissue injury during sensor implantation, there is a constant need for device size reduction, which imposes challenges in terms of sensitivity and reliability, as part of decreasing signal-to-noise and increasing layer complexity. Herein, we report sensitivity enhancement via electrochemical surface rebuilding of the working electrode (WE), which creates a three-dimensional nanoporous configuration with increased surface area.
Methods
The gold WE was electrochemically rebuilt to render its surface nanoporous followed by decoration with platinum nanoparticles. The efficacy of such process was studied using sensor sensitivity against hydrogen peroxide (H2O2). For glucose detection, the WE was further coated with five layers, namely, (1) polyphenol, (2) glucose oxidase, (3) polyurethane, (4) catalase, and (5) dexamethasone-releasing poly(vinyl alcohol)/poly(lactic-co-glycolic acid) composite. The amperometric response of the glucose sensor was noted in vitro and in vivo.
Results
Scanning electron microscopy revealed that electrochemical rebuilding of the WE produced a nanoporous morphology that resulted in a 20-fold enhancement in H2O2 sensitivity, while retaining >98% selectivity. This afforded a 4–5-fold increase in overall glucose response of the glucose sensor when compared with a control sensor with no surface rebuilding and fittable only within an 18 G needle. The sensor was able to reproducibly track in vivo glycemic events, despite the large background currents typically encountered during animal testing.
Conclusions
Enhanced sensor performance in terms of sensitivity and large signal-to-noise ratio has been attained via electrochemical rebuilding of the WE. This approach also bypasses the need for conventional and nanostructured mediators currently employed to enhance sensor performance.
PMCID: PMC3737646  PMID: 23567003
electrochemical; implantable glucose sensor; membranes; needle-implantable; sensitivity; surface etching
16.  Systematic review and meta-analysis for thrombolysis treatment in patients with acute submassive pulmonary embolism 
Purpose
The aim of this systematic review was to evaluate the efficacy and safety of thrombolytic treatment in patients with submassive pulmonary embolism (PE).
Methods
An electronic search was carried out based on the databases from MEDLINE, Embase, Science Citation Index (SCI), and the Cochrane Library. We included prospective, randomized, and clinical trials in thrombolysis with heparin alone in adults who had evidence of right ventricular dysfunction and normotension. The main endpoints consist of mortality, recurrent PE, and bleeding risk. The relative risk (RR) and the relevant 95% confidence intervals were determined by the dichotomous variable.
Results
Only seven studies involving 594 patients met the inclusion criteria for further review. The cumulative effect of thrombolysis, compared with intravenous heparin, demonstrated no statistically significant difference in mortality (2.7% versus 4.3%; RR=0.64 [0.29–1.40]; P=0.27) or recurrent PE (2% versus 5%; RR=0.44 [0.19–1.05]; P=0.06). Thrombolytic therapy did not increase major hemorrhage compared with intravenous heparin (4.5% versus 3.3%; RR=1.16 [0.51–2.60]; P=0.73), but it was associated with an increased minor hemorrhage (41% versus 9%; RR=3.91 [1.46–10.48]; P=0.007).
Conclusion
Compared with heparin alone, neither mortality nor recurrent PE is reduced by thrombolysis in patients with submassive PE, and it does not reveal an increasing risk of major bleeding. In addition, thrombolysis also produces the increased risk of minor bleeding; however, no sufficient evidence verifies the thrombolytic benefit in this review, because the number of patients enrolled in the trials is limited. Therefore, a large, double-blind clinical trial is required to prove the outcomes of this meta-analysis.
doi:10.2147/PPA.S56280
PMCID: PMC3945048  PMID: 24611003
thrombolysis treatment; submassive pulmonary embolism; pulmonary embolism; heparin; warfarin
17.  Sphingosine Kinase 1 and Cancer: A Systematic Review and Meta-Analysis 
PLoS ONE  2014;9(2):e90362.
Background
Sphingosine kinase 1 (SK1) is a key regulator of the dynamic ceramide/sphingosine 1-phosphate rheostat balance and important in the pathological cancer genesis, progression, and metastasis processes. Many studies have demonstrated SK1 overexpressed in various cancers, but no meta-analysis has evaluated the relationship between SK1 and various cancers.
Methods
We retrieved relevant articles from the PubMed, EBSCO, ISI, and OVID databases. A pooled odds ratio (OR) was used to assess the associations between SK1 expression and cancer; hazard ratios (HR) were used for 5-year and overall survival. Review Manager 5.0 was used for the meta-analysis, and publication bias was evaluated with STATA 12.0 (Egger’s test).
Results
Thirty-four eligible studies (n = 4,673 patients) were identified. SK1 positivity and high expression were significantly different between cancer, non-cancer, and benign tissues. SK1 mRNA and protein expression levels were elevated in the cancer tissues, compared with the normal tissues. SK1 positivity rates differed between various cancer types (lowest [27.3%] in estrogen receptor-positive breast cancer and highest [82.2%] in tongue squamous cell carcinoma). SK1 positivity and high expression were associated with 5-year survival; the HR was 1.86 (95% confidence interval [CI], 1.18–2.94) for breast cancer, 1.58 (1.08–2.31) for gastric cancer, and 2.68 (2.10–3.44) for other cancers; the total cancer HR was 2.21 (95% CI, 1.83–2.67; P < 0.00001). The overall survival HRs were 2.09 (95% CI, 1.35–3.22), 1.56 (1.08–2.25), and 2.62 (2.05–3.35) in breast, gastric, and other cancers, respectively. The total effect HR was 2.21 (95% CI, 1.83–2.66; P < 0.00001).
Conclusions
SK1 positivity and high expression were significantly associated with cancer and a shorter 5-year and overall survival. SK1 positivity rates vary tremendously among the cancer types. It is necessary to further explore whether SK1 might be a predictive biomarker of outcomes in cancer patients.
doi:10.1371/journal.pone.0090362
PMCID: PMC3937388  PMID: 24587339
18.  Luteoloside Suppresses Proliferation and Metastasis of Hepatocellular Carcinoma Cells by Inhibition of NLRP3 Inflammasome 
PLoS ONE  2014;9(2):e89961.
The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC) is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS) accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC.
doi:10.1371/journal.pone.0089961
PMCID: PMC3935965  PMID: 24587153
19.  High-Resolution Melting Analysis for accurate detection of BRAF mutations: a systematic review and meta-analysis 
Scientific Reports  2014;4:4168.
The high-resolution melting curve analysis (HRMA) might be a good alternative method for rapid detection of BRAF mutations. However, the accuracy of HRMA in detection of BRAF mutations has not been systematically evaluated. We performed a systematic review and meta-analysis involving 1324 samples from 14 separate studies. The overall sensitivity of HRMA was 0.99 (95% confidence interval (CI) = 0.75–0.82), and the overall specificity was very high at 0.99 (95% CI = 0.94–0.98). The values for the pooled positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 68.01 (95% CI = 25.33–182.64), 0.06 (95% CI = 0.03–0.11), and1263.76 (95% CI = 393.91–4064.39), respectively. The summary receiver operating characteristic curve for the same data shows an area of 1.00 and a Q* value of 0.97. The high sensitivity and specificity, simplicity, low cost, less labor or time and rapid turnaround make HRMA a good alternative method for rapid detection of BRAF mutations in the clinical practice.
doi:10.1038/srep04168
PMCID: PMC3933866  PMID: 24566771
20.  A Functional Polymorphism in the Promoter Region of MicroRNA-146a Is Associated with the Risk of Alzheimer Disease and the Rate of Cognitive Decline in Patients 
PLoS ONE  2014;9(2):e89019.
miR146a is well known for its regulatory role in the immune response and inflammation. Recent studies have demonstrated the links between miR146a and Alzheimer disease (AD) and suggested that miR146a may be involved in neuroinflammation and the metabolism of amyloid-β (Aβ), which are critical events in AD pathology. Although genetic studies have focused on the association between the miR146a gene and susceptibility to several diseases, no association study of miR146a variability with AD has been conducted. In this report, we performed a case-control association study to analyze the genotype and allele distributions of the miR146a, rs2910464 and rs57095329 polymorphisms in a Chinese population consisting of 292 AD cases and 300 healthy controls. We found a significant difference in the genotypes and allele frequencies of rs57095329 between the AD cases and the controls (p = 0.0147 and p = 0.0184, respectively), where the AA genotype of rs57095329 was associated with an increased risk of AD as well the cognitive decline in AD patients. Additionally, the AA genotype of rs57095329 exhibited significantly higher miR146a expression than the GG+GA genotypes of rs2910164 in the peripheral blood cells (PBMCs) of healthy individuals and had a stronger effect on the production of IL-6 and IL-1β when the cells were stimulated with LPS. Our data provide preliminary evidence that the rs57095329 polymorphism in the miR146a promoter is involved in the genetic susceptibility to AD, and this risk AA genotype may increase the expression of miR146a and influence certain proinflammatory cytokines, thus playing a role in the pathogenesis of AD.
doi:10.1371/journal.pone.0089019
PMCID: PMC3934871  PMID: 24586483
21.  IgE-Associated IGHV Genes from Venom and Peanut Allergic Individuals Lack Mutational Evidence of Antigen Selection 
PLoS ONE  2014;9(2):e89730.
Antigen selection of B cells within the germinal center reaction generally leads to the accumulation of replacement mutations in the complementarity-determining regions (CDRs) of immunoglobulin genes. Studies of mutations in IgE-associated VDJ gene sequences have cast doubt on the role of antigen selection in the evolution of the human IgE response, and it may be that selection for high affinity antibodies is a feature of some but not all allergic diseases.
The severity of IgE-mediated anaphylaxis is such that it could result from higher affinity IgE antibodies. We therefore investigated IGHV mutations in IgE-associated sequences derived from ten individuals with a history of anaphylactic reactions to bee or wasp venom or peanut allergens. IgG sequences, which more certainly experience antigen selection, served as a control dataset.
A total of 6025 unique IgE and 5396 unique IgG sequences were generated using high throughput 454 pyrosequencing. The proportion of replacement mutations seen in the CDRs of the IgG dataset was significantly higher than that of the IgE dataset, and the IgE sequences showed little evidence of antigen selection. To exclude the possibility that 454 errors had compromised analysis, rigorous filtering of the datasets led to datasets of 90 core IgE sequences and 411 IgG sequences. These sequences were present as both forward and reverse reads, and so were most unlikely to include sequencing errors. The filtered datasets confirmed that antigen selection plays a greater role in the evolution of IgG sequences than of IgE sequences derived from the study participants.
doi:10.1371/journal.pone.0089730
PMCID: PMC3934916  PMID: 24586993
22.  rtM204Q May Serve as a Novel Lamivudine-Resistance-Associated Mutation of Hepatitis B Virus 
PLoS ONE  2014;9(2):e89015.
Background and Aims
Lamivudine (LAM) is still widely used for anti-HBV therapy in China. The study aimed to clarify whether a newly-found rtM204Q mutation from patients was associated with the drug resistance.
Methods
HBV complete reverse-transcriptase region was screened by direct sequencing and verified by clonal sequencing. Replication-competent plasmids containing patient-derived 1.1mer mutant or wild-type viral genome were constructed and transfected into HepG2 cells. After cultured with or without serially-diluted antiviral drugs, intracellular HBV replicative intermediates were quantitated for calculating the 50% effective concentration of drug (EC50).
Results
A total of 12,000 serum samples of 9,830 patients with chronic HBV infection were screened. rtM204Q mutation was detected in seven LAM-refractory patients. By contrast, rtM204I/rtM204V mutations were detected in 2,502 patients' samples. The rtM204Q emerged either alone or in concomitance with rtM204I/rtM204V, and all were accompanied with virologic breakthrough in clinical course. Clonal sequencing verified that rtM204Q mutant was predominant in viral quasispecies of these samples. Phenotypic analysis showed that rtM204Q mutant had 89.9% of replication capacity and 76-fold increased LAM EC50 of the concomitant wild-type strain. By contrast, rtM204I mutant in the sample had lower replication capacity and higher LAM resistance (46.3% and 1396-fold increased LAM EC50 of the wild-type strain) compared to rtM204Q mutant. rtM204Q mutant was susceptible to adefovir dipivoxil (ADV) in vitro and ADV/ADV+LAM rescue therapy in clinic.
Conclusion
rtM204Q is suggested to be a novel LAM-resistance-associated mutation. It conferred a moderate resistance with higher competent natural replication capacity compared to rtM204I mutation.
doi:10.1371/journal.pone.0089015
PMCID: PMC3933355  PMID: 24586482
23.  The Effects of Gene Polymorphisms in Interleukin-4 and Interleukin-6 on the Susceptibility of Rheumatoid Arthritis in a Chinese Population 
BioMed Research International  2014;2014:265435.
Background. Interleukin-4 (IL-4) and interleukin-6 (IL-6) have been reported to associate with pathogenesis of rheumatoid arthritis (RA); however, the role of IL-4 and IL-6 genetic polymorphisms in RA remains unknown. Method. A total of 752 unrelated Chinese patients with RA and 798 healthy Chinese volunteers with no family histories of any autoimmune diseases were recruited. The promoter IL-4-590 C/T and IL-6-174 G/C polymorphisms were genotyped. Result. The genotype distributions and allele frequencies of IL-4-590 C/T and IL-6-174 G/C polymorphisms in RA patients were significantly different from healthy volunteers. Statistically significant differences were observed in genotypes for IL-4-590 and IL-6-174. The frequencies of both the T allele on the IL-4-590 and the C on the IL-6-174 were significantly increased in RA patients. Conclusion. The IL-4-590 and IL-6-174 promoter polymorphisms may be associated with increased risk of RA and could be used as genetic marker for assessing the susceptibility and severity of RA in Chinese.
doi:10.1155/2014/265435
PMCID: PMC3953475
24.  Evaluation about the Performance of E-Government Based on Interval-Valued Intuitionistic Fuzzy Set 
The Scientific World Journal  2014;2014:234241.
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China.
doi:10.1155/2014/234241
PMCID: PMC3953636
25.  Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment 
Molecular Cancer  2014;13:30.
Solid cancer remains a major cause of death in the world. As limited treatment options are currently available to patients with solid cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, poses various pharmacological properties. A large number of triterpenoids exhibit cytotoxicity against a variety of cancer cells, and cancer preventive, as well as anticancer efficacy in preclinical animal models. To improve antitumor activity, some synthetic triterpenoid derivatives have been synthesized, including cyano-3,12-dioxooleana-1,9(11)- dien-28-oic (CDDO), its methyl ester (CDDO-Me), and imidazolide (CDDO-Im) derivatives. In this review, we will critically examine the current preclinical evidences of cancer preventive and therapeutic activity about one of the synthetic triterpenoids, CDDO-Me. Both in vitro and in vivo effects of this agent and related molecular mechanisms are presented.
doi:10.1186/1476-4598-13-30
PMCID: PMC3940295  PMID: 24552536
Triterpenoid; CDDO-Me; Solid cancer; Prevention; Treatment; Mechanisms

Results 1-25 (704)