PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Sun, dilong")
1.  Comprehensive Characterization of 10,571 Mouse Large Intergenic Noncoding RNAs from Whole Transcriptome Sequencing 
PLoS ONE  2013;8(8):e70835.
Large intergenic noncoding RNAs (lincRNAs) have been recognized in recent years to constitute a significant portion of the mammalian transcriptome, yet their biological functions remain largely elusive. This is partly due to an incomplete annotation of tissue-specific lincRNAs in essential model organisms, particularly in mice, which has hindered the genetic annotation and functional characterization of these novel transcripts. In this report, we performed ab initio assembly of 1.9 billion tissue-specific RNA-sequencing reads across six tissue types, and identified 3,965 novel expressed lincRNAs in mice. Combining these with 6,606 documented lincRNAs, we established a comprehensive catalog of 10,571 transcribed lincRNAs. We then systemically analyzed all mouse lincRNAs to reveal that some of them are evolutionally conserved and that they exhibit striking tissue-specific expression patterns. We also discovered that mouse lincRNAs carry unique genomic signatures, and that their expression level is correlated with that of neighboring protein-coding transcripts. Finally, we predicted that a large portion of tissue-specific lincRNAs are functionally associated with essential biological processes including the cell cycle and cell development, and that they could play a key role in regulating tissue development and functionality. Our analyses provide a framework for continued discovery and annotation of tissue-specific lincRNAs in model organisms, and our transcribed mouse lincRNA catalog will serve as a roadmap for functional analyses of lincRNAs in genetic mouse models.
doi:10.1371/journal.pone.0070835
PMCID: PMC3741367  PMID: 23951020
2.  Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa 
PLoS ONE  2012;7(5):e36442.
Polyploidization, both ancient and recent, is frequent among plants. A “two-step theory" was proposed to explain the meso-triplication of the Brassica “A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that “two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.
doi:10.1371/journal.pone.0036442
PMCID: PMC3342247  PMID: 22567157
3.  NONCODE v3.0: integrative annotation of long noncoding RNAs 
Nucleic Acids Research  2011;40(Database issue):D210-D215.
Facilitated by the rapid progress of high-throughput sequencing technology, a large number of long noncoding RNAs (lncRNAs) have been identified in mammalian transcriptomes over the past few years. LncRNAs have been shown to play key roles in various biological processes such as imprinting control, circuitry controlling pluripotency and differentiation, immune responses and chromosome dynamics. Notably, a growing number of lncRNAs have been implicated in disease etiology. With the increasing number of published lncRNA studies, the experimental data on lncRNAs (e.g. expression profiles, molecular features and biological functions) have accumulated rapidly. In order to enable a systematic compilation and integration of this information, we have updated the NONCODE database (http://www.noncode.org) to version 3.0 to include the first integrated collection of expression and functional lncRNA data obtained from re-annotated microarray studies in a single database. NONCODE has a user-friendly interface with a variety of search or browse options, a local Genome Browser for visualization and a BLAST server for sequence-alignment search. In addition, NONCODE provides a platform for the ongoing collation of ncRNAs reported in the literature. All data in NONCODE are open to users, and can be downloaded through the website or obtained through the SOAP API and DAS services.
doi:10.1093/nar/gkr1175
PMCID: PMC3245065  PMID: 22135294
4.  BRAD, the genetics and genomics database for Brassica plants 
BMC Plant Biology  2011;11:136.
Background
Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data.
Description
BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42). It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE), B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker.
Conclusion
BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.
doi:10.1186/1471-2229-11-136
PMCID: PMC3213011  PMID: 21995777
5.  A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly 
BMC Genomics  2011;12:239.
Background
Brassica rapa is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational B. rapa Genome Sequencing Project (BrGSP) was launched in 2003. In 2008, next generation sequencing technology was used to sequence the B. rapa genome. Several maps concerning B. rapa pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required.
Results
This study concerns the construction of a reference genetic linkage map for Brassica rapa, forming the backbone for anchoring sequence scaffolds of the B. rapa genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH) lines derived from microspore cultures of an F1 cross between a Chinese cabbage (B. rapa ssp. pekinensis) DH line (Z16) and a rapid cycling inbred line (L144) were used to construct the linkage map. PCR-based insertion/deletion (InDel) markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing B. rapa linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the B. rapa genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%.
Conclusions
The development of this linkage map is vital for the integration of genome sequences and genetic information, and provides a useful resource for the international Brassica research community.
doi:10.1186/1471-2164-12-239
PMCID: PMC3224973  PMID: 21569561

Results 1-5 (5)