PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping 
BMC Genomics  2014;15(1):1025.
Abstract
Background
Coix, Sorghum and Zea are closely related plant genera in the subtribe Maydeae. Coix comprises 9–11 species with different ploidy levels (2n = 10, 20, 30, and 40). The exclusively cultivated C. lacryma-jobi L. (2n = 20) is widely used in East and Southeast Asia for food and medicinal applications. Three fertile cytotypes (2n = 10, 20, and 40) have been reported for C. aquatica Roxb. One sterile cytotype (2n = 30) closely related to C. aquatica has been recently found in Guangxi of China. This putative hybrid has been named C. aquatica HG (Hybrid Guangxi). The genome composition and the evolutionary history of C. lacryma-jobi and C. aquatica HG are largely unclear.
Results
About 76% of the genome of C. lacryma-jobi and 73% of the genome of C. aquatica HG are repetitive DNA sequences as shown by low coverage genome sequencing followed by similarity-based cluster analysis. In addition, long terminal repeat (LTR) retrotransposable elements are dominant repetitive sequences in these two genomes, and the proportions of many repetitive sequences in whole genome varied greatly between the two species, indicating evolutionary divergence of them. We also found that a novel 102 bp variant of centromeric satellite repeat CentX and two other satellites only appeared in C. aquatica HG. The results from FISH analysis with repeat probe cocktails and the data from chromosomes pairing in meiosis metaphase showed that C. lacryma-jobi is likely a diploidized paleotetraploid species and C. aquatica HG is possibly a recently formed hybrid. Furthermore, C. lacryma-jobi and C. aquatica HG shared more co-existing repeat families and higher sequence similarity with Sorghum than with Zea.
Conclusions
The composition and abundance of repetitive sequences are divergent between the genomes of C. lacryma-jobi and C. aquatica HG. The results from fine karyotyping analysis and chromosome pairing suggested diploidization of C. lacryma-jobi during evolution and C. aquatica HG is a recently formed hybrid. The genome-wide comparison of repetitive sequences indicated that the repeats in Coix were more similar to those in Sorghum than to those in Zea, which is consistent with the phylogenetic relationship reported by previous work.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1025) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-1025
PMCID: PMC4256728  PMID: 25425126
Coix; Next-generation sequencing; Repeat element; Genome structure; Karyotyping; Polyploidy; Evolution
2.  Genome-Wide Analysis of Histone Modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica 
Molecular Plant  2013;6(5):1463-1472.
SUMMARY
H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active transcription in rice. They were used to discover unannotated genes and to predict transcription factor binding sites together with DNase-Seq data.
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions—a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
doi:10.1093/mp/sst018
PMCID: PMC3842134  PMID: 23355544
bioinformatics; chromatin structure and remodeling; epigenetics; gene regulation; genomics; rice.
3.  Pleiotropic effects of ZmLAZY1 on the auxin-mediated responses to gravity and light in maize shoot and inflorescences 
Plant Signaling & Behavior  2013;8(12):e27452.
Auxin has been found to control both gravitropism and inflorescence development in plant. Auxin transport has also been demonstrated to be responsible for tropism. Maize, a key agricultural crop, has distinct male (tassel) and female (ear) inflorescence, and this morphogenesis depends on auxin maximum and gradient. The classic maize mutant lazy plant1 (la1) has defective gravitropic response. The mechanism underlining maize gravitropism remains unclear. Recently, we isolated the ZmLA1 gene by map-based cloning, and our findings suggest that ZmLA1 might mediate the crosstalk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and auxin-mediated light response in maize. Here, we propose a model describing the ZmLA1-mediated complex interactions among auxin, gravity, light, and inflorescent development.
doi:10.4161/psb.27452
PMCID: PMC4091251  PMID: 24389746
LAZY1; auxin; inflorescences development; light; maize; polar auxin transport; shoot gravitropism
4.  Chlorophyll Deficiency in the Maize elongated mesocotyl2 Mutant Is Caused by a Defective Heme Oxygenase and Delaying Grana Stacking 
PLoS ONE  2013;8(11):e80107.
Background
Etiolated seedlings initiate grana stacking and chlorophyll biosynthesis in parallel with the first exposure to light, during which phytochromes play an important role. Functional phytochromes are biosynthesized separately for two components. One phytochrome is biosynthesized for apoprotein and the other is biosynthesized for the chromophore that includes heme oxygenase (HO).
Methodology/Principal Finding
We isolated a ho1 homolog by map-based cloning of a maize elongated mesocotyl2 (elm2) mutant. cDNA sequencing of the ho1 homolog in elm2 revealed a 31 bp deletion. De-etiolation responses to red and far-red light were disrupted in elm2 seedlings, with a pronounced elongation of the mesocotyl. The endogenous HO activity in the elm2 mutant decreased remarkably. Transgenic complementation further confirmed the dysfunction in the maize ho1 gene. Moreover, non-appressed thylakoids were specifically stacked at the seedling stage in the elm2 mutant.
Conclusion
The 31 bp deletion in the ho1 gene resulted in a decrease in endogenous HO activity and disrupted the de-etiolation responses to red and far-red light. The specific stacking of non-appressed thylakoids suggested that the chlorophyll biosynthesis regulated by HO1 is achieved by coordinating the heme level with the regulation of grana stacking.
doi:10.1371/journal.pone.0080107
PMCID: PMC3823864  PMID: 24244620
5.  Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize 
Journal of Experimental Botany  2013;64(4):1083-1096.
Production of maternal haploids via a male inducer can greatly accelerate maize breeding and is an interesting biological phenomenon in double fertilization. However, the mechanism behind haploid induction remains elusive. Segregation distortion, which is increasingly recognized as a potentially powerful evolutionary force, has recently been observed during maternal haploid induction in maize. The results present here showed that both male gametophytic and zygotic selection contributed to severe segregation distortion of a locus, named segregation distortion 1 (sed1), during maternal haploid induction in maize. Interestingly, analysis of reciprocal crosses showed that sed1 is expressed in the male gametophyte. A novel mapping strategy based on segregation distortion has been used to fine-map this locus. Strong selection for the presence of the sed1 haplotype from inducers in kernels with haploid formation and defects could be detected in the segregating population. Dual-pollination experiments showed that viable pollen grains from inducers had poor pollen competitive ability against pollen from normal genotypes. Although defective kernels and haploids have different phenotypes, they are most probably caused by the sed1 locus, and possible mechanisms for production of maternal haploids and the associated segregation distortion are discussed. This research also provides new insights into the process of double fertilization.
doi:10.1093/jxb/ers393
PMCID: PMC3580820  PMID: 23349137
Defective kernel; haploid; maize; male gametophyte; pollen competitive ability; segregation distortion.
6.  An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2 
BMC Genetics  2011;12:18.
Background
Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.).
Results
In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed.
Conclusions
Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.
doi:10.1186/1471-2156-12-18
PMCID: PMC3039625  PMID: 21272311
7.  An Integrated Genetic and Cytogenetic Map of the Cucumber Genome 
PLoS ONE  2009;4(6):e5795.
The Cucurbitaceae includes important crops such as cucumber, melon, watermelon, squash and pumpkin. However, few genetic and genomic resources are available for plant improvement. Some cucurbit species such as cucumber have a narrow genetic base, which impedes construction of saturated molecular linkage maps. We report herein the development of highly polymorphic simple sequence repeat (SSR) markers originated from whole genome shotgun sequencing and the subsequent construction of a high-density genetic linkage map. This map includes 995 SSRs in seven linkage groups which spans in total 573 cM, and defines ∼680 recombination breakpoints with an average of 0.58 cM between two markers. These linkage groups were then assigned to seven corresponding chromosomes using fluorescent in situ hybridization (FISH). FISH assays also revealed a chromosomal inversion between Cucumis subspecies [C. sativus var. sativus L. and var. hardwickii (R.) Alef], which resulted in marker clustering on the genetic map. A quarter of the mapped markers showed relatively high polymorphism levels among 11 inbred lines of cucumber. Among the 995 markers, 49%, 26% and 22% were conserved in melon, watermelon and pumpkin, respectively. This map will facilitate whole genome sequencing, positional cloning, and molecular breeding in cucumber, and enable the integration of knowledge of gene and trait in cucurbits.
doi:10.1371/journal.pone.0005795
PMCID: PMC2685989  PMID: 19495411

Results 1-7 (7)