PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Han, honghua")
1.  A high-resolution cucumber cytogenetic map integrated with the genome assembly 
BMC Genomics  2013;14:461.
Background
High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research. The progress in the molecular and cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.).
Results
Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3–5) were constructed by fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6–7), cucumber has a complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly maps, we used a standardized map unit—relative map position (RMP) to produce the comparative map alignments. The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber chromosome, and accuracy and coverage of the draft genome assembly map.
Conclusions
We demonstrated a good correlation between positions of the markers in the linkage and physical maps, and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides essential information for the improvement of sequence assembly but also offers molecular tools for cucumber genomics research, comparative genomics and evolutionary study.
doi:10.1186/1471-2164-14-461
PMCID: PMC3710503  PMID: 23834562
2.  Synthetic miRNA-Mowers Targeting miR-183-96-182 Cluster or miR-210 Inhibit Growth and Migration and Induce Apoptosis in Bladder Cancer Cells 
PLoS ONE  2012;7(12):e52280.
Background
MicroRNAs (miRNAs) function as endogenous regulators of biological behaviors of human cancers. Several natural non-coding RNAs are reported to inhibit miRNAs by base-pairing interactions. These phenomena raise questions about the ability of artificial device to regulate miRNAs. The purpose of this study is to create synthetic devices that target a single miRNA or a miRNA cluster and to ascertain their therapeutic effects on the phenotypes of bladder cancer cells.
Methodology/Principal Findings
Tandem bulged miRNA binding sites were inserted into the 3′ untranslated region (UTR) of the SV-40 promoter-driven Renilla luciferase gene to construct two “miRNA-mowers” for suppression of miR-183-96-182 cluster or miR-210. A third device with tandem repeat sequences not complementary to any known miRNA was generated as an untargeted-control. In functional analyses, bladder cancer T24 and UM-UC-3 cells were transfected with each of the three devices, followed by assays for detection of their impacts. Luciferase assays indicated that the activities of the luciferase reporters in the miRNA-mowers were decreased to 30–50% of the untargeted-control. Using Real-Time qPCR, the expression levels of the target miRNAs were shown to be reduced 2-3-fold by the corresponding miRNA-mower. Cell growth, apoptosis, and migration were tested by MTT assay, flow cytometry assay, and in vitro scratch assay, respectively. Cell growth inhibition, increased apoptosis, and decreased motility were observed in miRNA-mowers-transfected bladder cancer cells.
Conclusions/Significance
Not only a single target miRNA but also the whole members of a target miRNA cluster can be blocked using this modular design strategy. Anti-cancer effects are induced by the synthetic miRNA-mowers in the bladder cancer cell lines. miR-183/96/182 cluster and miR-210 are shown to play oncogenic roles in bladder cancer. A potentially useful synthetic biology platform for miRNA loss-of-function study and cancer treatment has been established in this work.
doi:10.1371/journal.pone.0052280
PMCID: PMC3524115  PMID: 23284967
3.  Whole-Genome Synthesis and Characterization of Viable S13-Like Bacteriophages 
PLoS ONE  2012;7(7):e41124.
Background
Unprecedented progresses in high-throughput DNA sequencing and de novo gene synthesis technologies have allowed us to create living organisms in the absence of natural template.
Methodology/Principal Findings
The sequence of wild-type S13 phage genome was downloaded from GenBank. Two synonymous mutations were introduced into wt-S13 genome to generate m1-S13 genome. Another mutant, m2-S13 genome, was obtained by engineering two nonsynonymous mutations in the capsid protein coding region of wt-S13 genome. A chimeric phage genome was designed by replacing the F capsid protein open reading frame (ORF) from phage S13 with the F capsid protein ORF from phage G4. The whole genomes of all four phages were assembled from a series of chemically synthesized short overlapping oligonucleotides. The linear synthesized genomes were circularized and electroporated into E.coli C, the standard laboratory host of S13 phage. All four phages were recovered and plaques were visualized. The results of sequencing showed the accuracy of these synthetic genomes. The synthetic phages were capable of lysing their bacterial host and tolerating general environmental conditions. While no phenotypic differences among the variant strains were observed when grown in LB medium with CaCl2, the S13/G4 chimera was found to be much more sensitive to the absence of calcium and to have a lower adsorption rate under calcium free condition.
Conclusions/Significance
The bacteriophage S13 and its variants can be chemically synthesized. The major capsid gene of phage G4 is functional in the phage S13 life cycle. These results support an evolutional hypothesis which has been proposed that a homologous recombination event involving gene F of quite divergent ancestral lineages should be included in the history of the microvirid family.
doi:10.1371/journal.pone.0041124
PMCID: PMC3399791  PMID: 22815936
4.  Convergent Evidence from Multimodal Imaging Reveals Amygdala Abnormalities in Schizophrenic Patients and Their First-Degree Relatives 
PLoS ONE  2011;6(12):e28794.
Background
Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.
Methods
Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.
Results
Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.
Conclusions
Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.
doi:10.1371/journal.pone.0028794
PMCID: PMC3234284  PMID: 22174900
5.  A Systematic Analysis on DNA Methylation and the Expression of Both mRNA and microRNA in Bladder Cancer 
PLoS ONE  2011;6(11):e28223.
Background
DNA methylation aberration and microRNA (miRNA) deregulation have been observed in many types of cancers. A systematic study of methylome and transcriptome in bladder urothelial carcinoma has never been reported.
Methodology/Principal Findings
The DNA methylation was profiled by modified methylation-specific digital karyotyping (MMSDK) and the expression of mRNAs and miRNAs was analyzed by digital gene expression (DGE) sequencing in tumors and matched normal adjacent tissues obtained from 9 bladder urothelial carcinoma patients. We found that a set of significantly enriched pathways disrupted in bladder urothelial carcinoma primarily related to “neurogenesis” and “cell differentiation” by integrated analysis of -omics data. Furthermore, we identified an intriguing collection of cancer-related genes that were deregulated at the levels of DNA methylation and mRNA expression, and we validated several of these genes (HIC1, SLIT2, RASAL1, and KRT17) by Bisulfite Sequencing PCR and Reverse Transcription qPCR in a panel of 33 bladder cancer samples.
Conclusions/Significance
We characterized the profiles between methylome and transcriptome in bladder urothelial carcinoma, identified a set of significantly enriched key pathways, and screened four aberrantly methylated and expressed genes. Conclusively, our findings shed light on a new avenue for basic bladder cancer research.
doi:10.1371/journal.pone.0028223
PMCID: PMC3227661  PMID: 22140553
6.  Chemical Synthesis of Bacteriophage G4 
PLoS ONE  2011;6(11):e27062.
Background
Due to recent leaps forward in DNA synthesis and sequencing technology, DNA manipulation has been extended to the level of whole-genome synthesis. Bacteriophages occupy a special niche in the micro-organic ecosystem and have potential as a tool for therapeutic agent. The purpose of this study was to carry out chemical synthesis of the bacteriophage G4 and the study of its infectivity.
Methodology/Principal Findings
Full-sized genomes of bacteriophage G4 molecules were completed from short overlapping synthetic oligonucleotides by direct assembly polymerase chain reaction and ligase chain reaction followed by fusion polymerase chain reaction with flanking primers. Three novel restriction endonuclease sites were introduced to distinguish the synthetic G4 from the wild type. G4 particles were recovered after electroporation into Escherichia coli and were efficient enough to infect another strain. The phage was validated by electron microscope. Specific polymerase chain reaction assay and restriction analyses of the plaques verified the accuracy of the chemical synthetic genomes.
Conclusions
Our results showed that the bacteriophage G4 obtained is synthetic rather than a wild type. Our study demonstrated that a phage can be synthesized and manipulated genetically according to the sequences, and can be efficient enough to infect the Escherichia coli, showing the potential use of synthetic biology in medical application.
doi:10.1371/journal.pone.0027062
PMCID: PMC3217949  PMID: 22110602
7.  Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study 
PLoS ONE  2011;6(10):e25805.
Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia.
doi:10.1371/journal.pone.0025805
PMCID: PMC3185013  PMID: 21991357
8.  MicroRNA Expression Signatures of Bladder Cancer Revealed by Deep Sequencing 
PLoS ONE  2011;6(3):e18286.
Background
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They are aberrantly expressed in many types of cancers. In this study, we determined the genome-wide miRNA profiles in bladder urothelial carcinoma by deep sequencing.
Methodology/Principal Findings
We detected 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s) in nine bladder urothelial carcinoma patients by deep sequencing. Many miRNAs and miRNA*s were significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium. hsa-miR-96 was the most significantly upregulated miRNA and hsa-miR-490-5p was the most significantly downregulated one. Upregulated miRNAs were more common than downregulated ones. The hsa-miR-183, hsa-miR-200b∼429, hsa-miR-200c∼141 and hsa-miR-17∼92 clusters were significantly upregulated. The hsa-miR-143∼145 cluster was significantly downregulated. hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. They were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p<0.001 for each miRNA).
Conclusions/Significance
To date, this is the first study to determine genome-wide miRNA expression patterns in human bladder urothelial carcinoma by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, suggesting that they might play roles as oncogenes or tumor suppressors in the development and/or progression of this cancer. Our data provide novel insights into cancer biology.
doi:10.1371/journal.pone.0018286
PMCID: PMC3065473  PMID: 21464941
9.  An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2 
BMC Genetics  2011;12:18.
Background
Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.).
Results
In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed.
Conclusions
Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.
doi:10.1186/1471-2156-12-18
PMCID: PMC3039625  PMID: 21272311
10.  An Integrated Genetic and Cytogenetic Map of the Cucumber Genome 
PLoS ONE  2009;4(6):e5795.
The Cucurbitaceae includes important crops such as cucumber, melon, watermelon, squash and pumpkin. However, few genetic and genomic resources are available for plant improvement. Some cucurbit species such as cucumber have a narrow genetic base, which impedes construction of saturated molecular linkage maps. We report herein the development of highly polymorphic simple sequence repeat (SSR) markers originated from whole genome shotgun sequencing and the subsequent construction of a high-density genetic linkage map. This map includes 995 SSRs in seven linkage groups which spans in total 573 cM, and defines ∼680 recombination breakpoints with an average of 0.58 cM between two markers. These linkage groups were then assigned to seven corresponding chromosomes using fluorescent in situ hybridization (FISH). FISH assays also revealed a chromosomal inversion between Cucumis subspecies [C. sativus var. sativus L. and var. hardwickii (R.) Alef], which resulted in marker clustering on the genetic map. A quarter of the mapped markers showed relatively high polymorphism levels among 11 inbred lines of cucumber. Among the 995 markers, 49%, 26% and 22% were conserved in melon, watermelon and pumpkin, respectively. This map will facilitate whole genome sequencing, positional cloning, and molecular breeding in cucumber, and enable the integration of knowledge of gene and trait in cucurbits.
doi:10.1371/journal.pone.0005795
PMCID: PMC2685989  PMID: 19495411

Results 1-10 (10)