PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (159)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling 
Journal of Virology  2016;90(14):6538-6548.
ABSTRACT
Flaviviruses pose a significant threat to both animals and humans. Recently, a novel flavivirus, duck Tembusu virus (DTMUV), was identified to be the causative agent of a serious duck viral disease in Asia. Its rapid spread, expanding host range, and uncertain transmission routes have raised substantial concerns regarding its potential threats to nonavian hosts, including humans. Here, we demonstrate that DTMUV is not pathogenic for nonhuman primates and is highly sensitive to mammal type I interferon (IFN) signaling. In vitro assays demonstrated that DTMUV infected and replicated efficiently in various mammalian cell lines. Further tests in mice demonstrated high neurovirulence and the age-dependent neuroinvasiveness of the virus. In particular, the inoculation of DTMUV into rhesus monkeys did not result in either viremia or apparent clinical symptoms, although DTMUV-specific humoral immune responses were detected. Furthermore, we revealed that although avian IFN failed to inhibit DTMUV in avian cells, DTMUV was more sensitive to the antiviral effects of type I interferon than other known human-pathogenic flaviviruses. Knockout of the type I IFN receptor in mice caused apparent viremia, viscerotropic disease, and mortality, indicating a vital role of IFN signaling in protection against DTMUV infection. Collectively, we provide direct experimental evidence that this novel avian-origin DTMUV possesses a limited capability to establish infection in immunocompetent primates due to its decreased antagonistic activity in the mammal IFN system. Furthermore, our findings highlight the potential risk of DTMUV infection in immunocompromised individuals and warrant studies on the cross-species transmission and pathogenesis of this novel flavivirus.
IMPORTANCE Mosquito-borne flaviviruses comprise a large group of pathogenic and nonpathogenic members. The pathogenic flaviviruses include dengue, West Nile, and Japanese encephalitis viruses, and the nonpathogenic flaviviruses normally persist in a natural cycle and rarely cause disease in humans. A novel flavivirus, DTMUV (also known as duck egg drop syndrome flavivirus [DEDSV]) was identified in 2012 in ducks and then rapidly spread to several Asian countries. This new flavivirus was then shown to infect multiple avian species, resulting in neurological symptoms with unknown routes of transmission. There is public concern regarding its potential transmission from birds to humans and other nonavian hosts. Our present study shows that the mammalian IFN system can efficiently eliminate DTMUV infection and that the emergence of severe DTMUV-associated disease in mammals, especially humans, is unlikely. Currently, DTMUV infection mostly affects avian species.
doi:10.1128/JVI.00197-16
PMCID: PMC4936123  PMID: 27147750
2.  Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection 
Scientific Data  2016;3:160119.
The closely related species Brassica rapa and B. oleracea encompass a wide range of vegetable, fodder and oil crops. The release of their reference genomes has facilitated resequencing collections of B. rapa and B. oleracea aiming to build their variome datasets. These data can be used to investigate the evolutionary relationships between and within the different species and the domestication of the crops, hereafter named morphotypes. These data can also be used in genetic studies aiming at the identification of genes that influence agronomic traits. We selected and resequenced 199 B. rapa and 119 B. oleracea accessions representing 12 and nine morphotypes, respectively. Based on these resequencing data, we obtained 2,249,473 and 3,852,169 high quality SNPs (single-nucleotide polymorphisms), as well as 303,617 and 417,004 InDels for the B. rapa and B. oleracea populations, respectively. The variome datasets of B. rapa and B. oleracea represent valuable resources to researchers working on evolution, domestication or breeding of Brassica vegetable crops.
doi:10.1038/sdata.2016.119
PMCID: PMC5170593  PMID: 27996963
Plant domestication; Agricultural genetics
3.  China’s health assistance to Africa: opportunism or altruism? 
China has made substantial health commitments to Africa in the past several decades. However, while much has been written regarding China-Africa aid overall, relatively little attention has been given to China’s health aid. To better understand these investments, we provide an overview of the current framework and characteristics of China’s health aid to Africa. China’s health assistance has been perceived by some as opportunistic, largely as a demonstration of China’s engagement in “soft power” and an attempt to enhance its access to natural resources and political favors by African countries. Others have attributed altruistic intent, aiming to support the advancement of the health of populations in the African continent with a “no strings attached” approach. Our overview demonstrated that despite the magnitude of China’s health assistance, many questions remain regarding the scope of this aid, its effectiveness and the governance mechanisms that guide the conceptualization and implementation of such efforts. We also identified the need for a systematic and rigorous evaluation of the various elements of China’s health assistance to African countries in order to gain a deeper understanding of how priorities and allocations for health aid are determined, how such aid fits within the specific African country’s health strategies and to assess the effectiveness of such aid. Insights garnered through such an assessment could help determine future priorities for investment as well as inform efforts to optimize the value of China's aid for the populations of the recipient countries.
doi:10.1186/s12992-016-0217-1
PMCID: PMC5135833  PMID: 27912773
China-Africa health aid; Health diplomacy; Public health; Foreign assistance; Development aid
4.  Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells 
PLoS ONE  2016;11(10):e0164768.
Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner.
doi:10.1371/journal.pone.0164768
PMCID: PMC5079659  PMID: 27780263
5.  Early Detection of T cell Transfer-induced Autoimmune Colitis by In Vivo Imaging System 
Scientific Reports  2016;6:35635.
Inflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn’s disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25−CD45RBhiCD4+ (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer. However, weight loss neither has sufficient sensitivity nor totally matches the pathological findings of CD. To establish an early and sensitive indicator of autoimmune colitis model, the transferred T cell-induced colitis mouse model was modified by transferring luciferase-expressing donor T cells and determining the colitis by in vivo imaging system (IVIS). Colitis was detected with IVIS 7–10 days before the onset of body weight loss and diarrhea. IVIS was also applied in the dexamethasone treatment trial, and was a more sensitive indicator than body weight changes. All IVIS signals were parallel to the pathological abnormalities of the gut and immunological analysis results. In summary, IVIS provides both sensitive and objective means to monitor the disease course of transferred T cell-induced CD and fulfills the 3Rs principle of humane care of laboratory animals.
doi:10.1038/srep35635
PMCID: PMC5071899  PMID: 27762297
6.  Post-inhaled corticosteroid pulmonary tuberculosis and pneumonia increases lung cancer in patients with COPD 
BMC Cancer  2016;16:778.
Background
Inhaled corticosteroids (ICS) have been associated with decreased lung cancer risk. However, they have been associated with pulmonary infections (tuberculosis [TB] and pneumonia) in patients with chronic obstructive pulmonary disease (COPD). TB and pneumonia have increased lung cancer risk. The association between post-ICS pulmonary infections and lung cancer remains unclear.
Methods
We conducted a retrospective cohort study from 2003 to 2010 using the Taiwan National Health Insurance Research Database. Among the 1,089,955 patients with COPD, we identified 8813 new users of ICS prescribed for a period of 3 months or more and 35,252 non-ICS users who were randomly matched for sex, age and date of ICS use from 2003 to 2005. Cox proportional hazard regression was used to estimate the hazard ratio (HR) of pulmonary infections in patients with/without ICS use.
Results
The HRs for lung cancer in ICS users with sequential lung infections were as follows; 2.42 (95 % confidence interval [CI], 1.28–4.58) for individuals with TB, 2.37 (95 % CI, 1.01–5.54) for TB and pneumonia, and 1.17(95 % CI, 0.69–1.98) for those with pneumonia. For non-ICS users with pulmonary infections, the HRs were 1.68 (95 % CI, 0.78–3.65) for individual with TB and pneumonia, 1.42 (95 % CI, 0.89–2.26) for TB, and 0.95 (95 % CI, 0.62–1.46) for individuals with pneumonia.
Conclusions
COPD patients with TB /or pneumonia who used ICS had increased risk of lung cancer. Because the overall prognosis of lung cancer remains poor, screening tests are recommended for patients with these conditions.
doi:10.1186/s12885-016-2838-4
PMCID: PMC5057453  PMID: 27724847
Chronic obstructive pulmonary disease; Inhaled corticosteroid; Pneumonia; Tuberculosis
7.  Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization 
eLife  null;5:e17636.
Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses.
DOI: http://dx.doi.org/10.7554/eLife.17636.001
eLife digest
Flaviviruses include a large family of viruses that are harmful to human health, such as dengue virus, West Nile virus and Zika virus. Understanding the details of the life cycle of these viruses is important for better controlling and treating the diseases that they cause.
The genetic information of flaviviruses is stored in single-stranded molecules of RNA. To form new copies of a virus, the RNA must be replicated in a process that involves two critical steps. First, an enzyme called viral RNA polymerase NS5 must be recruited to a specific end of the RNA strand (known as the 5′ end). Then, the ends of the RNA strand bind together to form a circular loop. However, little is known about whether these two processes are linked, or how they are regulated.
Using bioinformatics, biochemical and reverse genetics approaches, Liu et al. have now identified a new section of RNA in the 5′ end of the flavivirus RNA, named the 5′-UAR-flanking stem (or UFS for short), which is critical for viral replication. The UFS plays an important role in efficiently recruiting the NS5 viral RNA polymerase to the 5′ end of the flavivirus RNA.
After the RNA forms a circle, the UFS unwinds. This makes the NS5 polymerase less likely to bind to the 5′ end of the RNA. Stabilizing the structure of the UFS impairs the ability of the RNA strand to form a circle, and hence reduces the ability of the RNA to replicate. Thus, the UFS links and enables communication between the processes that form the flavivirus RNA into a circle and that recruit the viral RNA polymerase to the RNA.
The structural basis of the interaction between the flavivirus RNA 5′ end, including the UFS element, and the viral RNA polymerase now deserves further investigation. It will be also important to explore whether other types of viruses regulate their replication via a similar mechanism.
DOI: http://dx.doi.org/10.7554/eLife.17636.002
doi:10.7554/eLife.17636
PMCID: PMC5101012  PMID: 27692070
flavivirus; genome cyclization; viral replicase recruitment; cis-acting element; viral RNA structure; Virus
8.  Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates 
EBioMedicine  2016;12:170-177.
Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemics of Zika virus (ZIKV). Here we report a non-human primate model using a 2016 contemporary clinical isolate of ZIKV. Upon subcutaneous inoculation, rhesus macaques developed fever and viremia, with robust excretion of ZIKV RNA in urine, saliva, and lacrimal fluid. Necropsy of two infected animals revealed that systematic infections involving central nervous system and visceral organs were established at the acute phrase. ZIKV initially targeted the intestinal tracts, spleen, and parotid glands, and retained in spleen and lymph nodes till 10 days post infection. ZIKV-specific immune responses were readily induced in all inoculated animals. The non-human primate model described here provides a valuable platform to study ZIKV pathogenesis and to evaluate vaccine and therapeutics.
Highlights
•Subcutaneous inoculation of ZIKV causes fever and viremia in NHPs•Robust viral RNA excretion was seen in urine, saliva, and lacrimal fluid.•The intestinal tracts, spleen, parotid glands, and lymph nodes us are potential target organs.•ZIKV infection induces robust humoral and cellular immune response.
Zika virus (ZIKV) is spreading throughout the world whereas no vaccine or drug is currently available. To better understand the disease, we established the non-human primate model with a ZIKV strain isolated in 2016. We found that ZIKV infection in Rhesus monkeys resulted in fever, and viral RNA were present in various body fluids, including blood, urine, saliva, and lacrimal fluids. We identified the intestinal tracts, spleen, parotid glands, and lymph nodes as potential target organs of ZIKV by necropsy. The animal model not only helps understand the disease, but also provides a powerful tool for vaccine and antiviral tests.
doi:10.1016/j.ebiom.2016.09.022
PMCID: PMC5078627  PMID: 27693104
Zika virus; Non-human primate model; Target organ; Lacrimal fluid
9.  The Lattice Kinetic Monte Carlo Simulation of Atomic Diffusion and Structural Transition for Gold 
Scientific Reports  2016;6:33128.
For the kinetic simulation of metal nanoparticles, we developed a self-consistent coordination-averaged energies for Au atoms based on energy properties of gold bulk phases. The energy barrier of the atom pairing change is proposed and holds for the microscopic reversibility principle. By applying the lattice kinetic Monte Carlo simulation on gold films, we found that the atomic diffusion of Au on the Au(111) surface undergoes a late transition state with an energy barrier of about 0.2 eV and a prefactor between 40~50 Å2/ps. This study also investigates the structural transition from spherical to faceted gold nanoparticles upon heating. The temperatures of structural transition are in agreement with the experimental melting temperatures of gold nanoparticles with diameters ranging from 2 nm to 8 nm.
doi:10.1038/srep33128
PMCID: PMC5024106  PMID: 27629538
10.  The association between phosphatase and tensin homolog hypermethylation and patients with breast cancer, a meta-analysis and literature review 
Scientific Reports  2016;6:32723.
The Phosphatase and tensin homolog (PTEN) protein is a negative regulator of the Akt pathway, leading to suppression of apoptois and increased cell survival. Its role as a tumor-suppressor gene has been adequately substantiated, and PTEN hypermethylation has been demonstrated in familial and sporadic cancers. However, the association and clinical significance between PTEN hypermethylation and breast cancer remains unclear. In this study, we systematically reviewed studies of PTEN hypermethylation and breast cancer and quantify the association between PTEN hypermethylation and breast cancer using meta-analysis methods. The pooled OR, 22.30, 95% confidential intervals, CI = 1.98–251.51, P = 0.01, which demonstrates that loss of PTEN expression by hypermethylation plays a critical role in the early tumorigenesis of ductal carcinoma in situ (DCIS). In addition, PTEN hypermethylation also is detected in invasive ductal carcinomas (IDCs) and is significantly higher than in normal controls, OR = 23.32, 95% CI = 10.43–52.13, P < 0.00001. Further analysis did not show significant correlation between PTEN hypermethylation and the progression of breast cancer, estrogen receptor (ER), progesterone receptor (PgR), as well as HER2 status. These results indicate the PTEN hypermethylation is significantly associated with both DCIS and IDCs. The detection of PTEN hypermethylation could be an early tumorigenesis marker for breast cancer patients.
doi:10.1038/srep32723
PMCID: PMC5020353  PMID: 27620353
11.  Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus 
Zika virus (ZIKV) has become a threat to global health since the outbreak in Brazil in 2015. Although ZIKV is generally considered an Aedes-transmitted pathogen, new evidence has shown that parts of the virus closely resemble Culex-transmitted viruses. Therefore, it is important to evaluate the competence of Culex species for ZIKV to understand their potential as vectors. In this study, female Culex pipiens quinquefasciatus were orally exposed to ZIKV. Mosquito midguts, salivary glands and ovaries were tested for ZIKV to measure infection and dissemination at 2, 4, 6, 8, 12, 16 and 18 days post exposure (pe). In addition, saliva was collected from mosquitoes after infection and infant mice were bitten by infected mosquitoes to measure the transmission ability of Cx. p. quinquefasciatus. The results showed that the peak time of virus appearance in the salivary glands was day 8 pe, with 90% infection rate and an estimated virus titer of 3.92±0.49 lg RNA copies/mL. Eight of the nine infant mice had positive brains after being bitten by infected mosquitoes, which meant that Cx. p. quinquefasciatus could be infected with and transmit ZIKV following oral infection. These laboratory results clearly demonstrate the potential role of Cx. p. quinquefasciatus as a vector of ZIKV in China. Because there are quite different vector management strategies required to control Aedes (Stegomyia) species and Cx. p. quinquefasciatus, an integrated approach may be required should a Zika epidemic occur.
doi:10.1038/emi.2016.102
PMCID: PMC5113053  PMID: 27599470
Culex pipiens quinquefasciatus; transmission; vector competence; Zika virus (ZIKV)
12.  Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus 
Open Forum Infectious Diseases  2016;3(4):ofw175.
The ongoing Zika virus (ZIKV) outbreaks have raised global concerns due to its unexpected clinical manifestations. Antiviral development is of high priority in response to the ZIKV emergency. In this study, we report that an adenosine analog NITD008 has potent in vitro and in vivo antiviral activity against ZIKV. The compound can effectively inhibit the historical and contemporary ZIKV strains in cultures as well as significantly reduce viremia and prevent mortality in A129 mice. Our results have demonstrated that NITD008 is potent inhibitor of ZIKV and can be used as reference inhibitor for future ZIKV antiviral drug screen and discovery.
doi:10.1093/ofid/ofw175
PMCID: PMC5063548  PMID: 27747251
adenosine analog; antiviral; mouse model; Zika virus
13.  The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans 
BMC Genomics  2016;17:559.
Background
The heat shock response, induced by cytoplasmic proteotoxic stress, is one of the most highly conserved transcriptional responses. This response, driven by the heat shock transcription factor HSF1, restores proteostasis through the induction of molecular chaperones and other genes. In addition to stress-dependent functions, HSF1 has also been implicated in various stress-independent functions. In C. elegans, the HSF1 homolog HSF-1 is an essential protein that is required to mount a stress-dependent response, as well as to coordinate various stress-independent processes including development, metabolism, and the regulation of lifespan. In this work, we have performed RNA-sequencing for C. elegans cultured in the presence and absence of hsf-1 RNAi followed by treatment with or without heat shock. This experimental design thus allows for the determination of both heat shock-dependent and -independent biological targets of HSF-1 on a genome-wide level.
Results
Our results confirm that C. elegans HSF-1 can regulate gene expression in both a stress-dependent and -independent fashion. Almost all genes regulated by HS require HSF-1, reinforcing the central role of this transcription factor in the response to heat stress. As expected, major categories of HSF-1-regulated genes include cytoprotection, development, metabolism, and aging. Within both the heat stress-dependent and -independent gene groups, significant numbers of genes are upregulated as well as downregulated, demonstrating that HSF-1 can both activate and repress gene expression either directly or indirectly. Surprisingly, the cellular process most highly regulated by HSF-1, both with and without heat stress, is cuticle structure. Via network analyses, we identify a nuclear hormone receptor as a common link between genes that are regulated by HSF-1 in a HS-dependent manner, and an epidermal growth factor receptor as a common link between genes that are regulated by HSF-1 in a HS-independent manner. HSF-1 therefore coordinates various physiological processes in C. elegans, and HSF-1 activity may be coordinated across tissues by nuclear hormone receptor and epidermal growth factor receptor signaling.
Conclusion
This work provides genome-wide HSF-1 regulatory networks in C. elegans that are both heat stress-dependent and -independent. We show that HSF-1 is responsible for regulating many genes outside of classical heat stress-responsive genes, including genes involved in development, metabolism, and aging. The findings that a nuclear hormone receptor may coordinate the HS-induced HSF-1 transcriptional response, while an epidermal growth factor receptor may coordinate the HS-independent response, indicate that these factors could promote cell non-autonomous signaling that occurs through HSF-1. Finally, this work highlights the genes involved in cuticle structure as important HSF-1 targets that may play roles in promoting both cytoprotection as well as longevity.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-016-2837-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-016-2837-5
PMCID: PMC4975890  PMID: 27496166
RNA-seq; Heat shock response; Stress; C. elegans; Transcript analysis; HSF-1
14.  Development of Neutralization Assay Using an eGFP Chikungunya Virus 
Viruses  2016;8(7):181.
Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV.
doi:10.3390/v8070181
PMCID: PMC4974516  PMID: 27367716
Chikungunya virus; reporter virus; antiviral; neutralization antibody
15.  The association between human papillomavirus infection and female lung cancer 
Medicine  2016;95(23):e3856.
Abstract
Lung cancer is the leading cause of cancer deaths among Taiwanese women. Human papillomavirus (HPV) has been detected in lung cancer tissues. The aim of this study was to investigate the association between HPV infection and lung cancer among the Taiwanese women. The analytical data were collected from the longitudinal health insurance databases (LHID 2005 and 2010) of the National Health Insurance Research Database (NHIRD). The study participants were 30 years and older and included 24,162 individuals who were identified with HPV infection from 2001 to 2004 and 1,026,986 uninfected individuals. Lung cancer incidence among infected and uninfected individuals was compared using the univariate and multivariate regression models. Among the total participants, 24,162 individuals were diagnosed with HPV. After adjusting for age, gender, low income, residential area, and comorbidity, the risk of lung cancer was higher in women (hazard ratio [HR] 1.263, 95% CI 1.015–1.571), while all cancer risks were high in both men and women with corresponding hazard ratios (HR) of 1.161 (95% CI 1.083–1.245) and HR 1.240 (95% CI 1.154–1.331), respectively. This study showed a significant increase in lung cancer risk among Taiwanese women who were exposed to HPV infection.
doi:10.1097/MD.0000000000003856
PMCID: PMC4907674  PMID: 27281096
cohort; human papillomavirus; lung cancer; population-based
16.  Influence of Occupational Status on the Quality of Life of Chinese Adult Patients with Epilepsy 
Chinese Medical Journal  2016;129(11):1285-1290.
Background:
Epilepsy is one of the most common serious neurological disorders. The present study aimed to investigate the influence of occupational status on the quality of life of Chinese adult patients with epilepsy.
Methods:
This study surveyed 819 subjects clinically diagnosed with epilepsy for more than 1 year in 11 hospitals in Beijing; 586 were employed (71.55%). All subjects completed the case report form with inquiries on demographic data, social factors, and illness. The patients’ quality of life was assessed using the quality of life in patients with epilepsy-31 items (QOLIE-31) questionnaire.
Results:
The QOLIE-31 score in the employed group was significantly higher than that in the unemployed group. Furthermore, the scores in all the sections (overall quality of life, energy/fatigue, emotional well-being, seizure worry, cognition, social function, and medication effects) of the employed group were higher than those of the unemployed group. Both the employed and unemployed groups achieved the highest difference in social function. The QOLIE-31 score of students was higher than those of farmers and workers. Both the students and workers scored higher in the quality of life compared with the adult peasants living with epilepsy. The students and farmers showed significant differences in QOLIE-31 score, cognition, emotional well-being, overall quality of life, energy/fatigue, and social function. In contrast, no significant difference was noted in seizure worry and medication effects across the three different kinds of occupation.
Conclusion:
Occupational status might affect the quality of life of Chinese adult patients with epilepsy, and social function is the most important contributing factor.
doi:10.4103/0366-6999.182827
PMCID: PMC4894037  PMID: 27231164
Adults; Epilepsy; Occupational Status; Quality of Life
17.  Epidemiological and Virological Characterizations of the 2014 Dengue Outbreak in Guangzhou, China 
PLoS ONE  2016;11(6):e0156548.
Dengue used to be recognized as an imported and sporadic disease in China. Since June 2014, an unexpected large dengue outbreak has attacked Guangzhou, China, resulting in more than 40,000 cases. Among the 1,942 laboratory-confirmed hospitalized dengue cases, 121 were diagnosed as severe dengue according to the 2009 WHO guideline, and 2 patients finally died. Laboratory diagnosis and virus isolation demonstrated that the majority (96%) cases were caused by dengue virus serotype 1 (DENV-1), and the others by serotype 2 (DENV-2). 14 DENV strains were isolated from the sera of acute-phase dengue patients during this outbreak, and the complete envelope (E) gene of 12 DENV-1 strains and two DENV-2 strains were determined using RT-PCR assay. Phylogenetic analysis based on the E gene revealed the DENV-1 strains isolated during the outbreak belonged to genotype I and V, respectively. These isolates formed three clades. DENV-2 isolates were assigned to the same clade belonging to genotype cosmopolitan. These strains isolated in 2014 were closely related to the isolates obtained from the same province, Guangdong, in 2013. No amino acid mutations known to increase virulence were identified throughout the E protein of isolates in 2014. These results indicate that dengue is turning into endemic in Guangdong, China, and extensive seroepidemiological investigation and mosquito control measures are critically needed in the future.
doi:10.1371/journal.pone.0156548
PMCID: PMC4892648  PMID: 27257804
18.  Dengue Specific Immunoglobulin A Antibody is Present in Urine and Associated with Disease Severity 
Scientific Reports  2016;6:27298.
The kinetics of dengue virus (DENV)-specific IgA antibody in urine and the potential correlation with disease severity remain elusive. In this study, 262 serial urine samples from 78 laboratory-confirmed patients were assayed by a commercial immunoglobulin A (IgA) kit against DENV. All cases were classified into dengue fever (DF) and severe dengue (SD) according to the 2009 WHO/TDR guideline. The total positive rate of IgA in urine was 59%. DENV-specific IgA was detected in urine from day 2 to day 13 after the onset of illness in DF patients; While for SD patients, anti-DENV IgA could be detected till day 14. The positive rate of IgA in patients with secondary infection was higher than that in patients with primary infection. Importantly, during 4–7 days after the onset of illness, the IgA positive rate of SD patients was significantly higher than that of DF patients. Especially, the intensity of IgA signal in SD patients was obviously stronger than that in DF patient at the recovery stage. Overall, our results suggested that the existence of DENV-specific IgA antibodies in urine might be a warning sign for the severity of disease and its measurement might provide valuable guidance for proper patient management.
doi:10.1038/srep27298
PMCID: PMC4890044  PMID: 27250703
19.  Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice 
Cell Research  2016;26(6):645-654.
The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies.
doi:10.1038/cr.2016.58
PMCID: PMC4897185  PMID: 27174054
Zika virus; vertical transmission; radial glial cells; cortical development
20.  Type I Interferons Triggered through the Toll-Like Receptor 3–TRIF Pathway Control Coxsackievirus A16 Infection in Young Mice 
Journal of Virology  2015;89(21):10860-10867.
ABSTRACT
Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot, and mouth disease (HFMD) in children. The host defense mechanisms against CVA16 infection remain almost entirely unknown. Unlike previous observations with enterovirus 71 (EV71) infection, here we show that gamma interferon (IFN-γ) or invariant NK T cell deficiency does not affect disease development or the survival of CVA16-infected mice. In contrast, type I interferon receptor deficiency resulted in the development of more severe disease in mice, and the mice had a lower survival rate than wild-type mice. Similarly, a deficiency of Toll-like receptor 3 (TLR3) and TRIF, but not other pattern recognition receptors, led to the decreased survival of CVA16-infected mice. TLR3-TRIF signaling was indispensable for the induction of type I interferons during CVA16 infection in mice and protected young mice from disease caused by the infection. In particular, TRIF-mediated immunity was critical for preventing CVA16 replication in the neuronal system before disease occurred. IFN-β treatment was also found to compensate for TRIF deficiency in mice and decreased the disease severity in and mortality of CVA16-infected mice. Altogether, type I interferons induced by TLR3-TRIF signaling mediate protective immunity against CVA16 infection. These findings may shed light on therapeutic strategies to combat HFMD caused by CVA16 infection.
IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major threat to public health in the Asia-Pacific region. Both CVA16 and EV71 are major pathogens that are responsible for HFMD. The majority of research efforts have focused on the more virulent EV71, but little has been done with CVA16. Thus far, host immune responses to CVA16 infection have not yet been elucidated. The present study discovered an initial molecular mechanism underlying host protective immunity against CVA16 infection, providing the first explanation for why CVA16 and EV71 cause different clinical outcomes upon infection of humans. Therefore, different therapeutic strategies should be developed to treat HFMD cases caused by these two viruses.
doi:10.1128/JVI.01627-15
PMCID: PMC4621134  PMID: 26292317
21.  GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells 
Oncotarget  2016;7(11):12063-12074.
GDF11/BMP11, a member of TGF-β superfamily, was reported to rejuvenate heart, skeletal muscle and blood vessel architecture in aged mice. However, the rejuvenative effects of GDF11 were questioned recently. Here, we investigated the effects of GDF11 on smad and non-smad signals in human umbilical vein endothelial cells (HUVECs) and the effects of GDF11 on proliferation and migration of HUVECs and primary rat aortic endothelial cells (RAECs). GDF11 factor purchased from two different companies (PeproTech and R&D Systems) was comparatively studied. Western blot was used to detect the protein expressions. The cell viability and migration were examined by using MTT and wound healing assays. Results showed that GDF11 activated both smad1/5/8 and smad2/3 signals in HUVECs. GDF11 increased protein expression of NADPH oxidase 4(NOX4) in HUVECs. GDF11 showed no significant effect on the protein level of p38, p-p38, ERK, p-ERK, Akt, p-Akt (Ser473) and p-Akt(Thr308), but increased the protein level of p-JNK and p-AMPK in HUVECs, and these increases were inhibited by antioxidant mitoTEMPO treatment. GDF11 slightly increased cell viability after short-term treatment and slightly decreased cell viability after long-term treatment. GDF11 showed no significant effect on cell proliferation and migration. These data indicated that the notion of GDF11 as a rejuvenation-related factor for endothelial cells needs to be cautious.
doi:10.18632/oncotarget.7642
PMCID: PMC4914269  PMID: 26919250
bone morphogenetic protein 11; growth differentiation factor 11; smad2/3; smad1/5/8; endothelial cells; Pathology Section
22.  Clinical Immunophenotype at Disease Onset in Previously Healthy Patients With Cryptococcal Meningitis 
Medicine  2016;95(6):e2744.
Abstract
Cryptococcal meningitis (CM) is a global disease with significant morbidity and mortality. Although low peripheral blood cluster of differentiation 4 (CD4)+ cell counts are found to be related to a high burden of cryptococcus in HIV-infected patients, little is known about possible immune defects in previously healthy patients (PHPs). We performed a retrospective study of 41 CM patients treated from January 2005 to December 2014 who did not have HIV-infection. There were 33 PHPs and 8 not previously healthy patients (non-PHPs). We analyzed clinical test data pertaining to peripheral blood T cells, antibodies, inflammation markers, and cerebral spinal fluid (CSF) completed during the disease onset phase and 5 years following diagnosis. PHPs had significantly higher counts of cluster of differentiation 3 (CD3)+, cluster of differentiation 4 (CD4)+, and cluster of differentiation 45 (CD45)+ cells, and lower percentages of CD8+ cells than non-PHPs (P < 0.05). Measurements of inflammatory markers and immunoglobulin in blood were comparable except for lower immunoglobulin A (IgA) levels in non-PHPs (P = 0.0410). Examination of CSF revealed lower white blood cell (WBC) counts in non-PHPs. Five-year mortality in PHPs was higher than in non-PHPs (22.0% vs 12.5%) but this was not statistically significant (P > 0.05). Multivariate analysis revealed that higher immunoglobulin G (IgG) levels in serum during disease onset may be an independent predictor of mortality (P = 0.015). In conclusion, PHPs demonstrate an immunophenotype that is distinct from that of non-PHPs, leading to an improved understanding of the immunology of cryptococcal meningitis.
doi:10.1097/MD.0000000000002744
PMCID: PMC4753916  PMID: 26871820
23.  Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa 
Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.
doi:10.3389/fpls.2016.00094
PMCID: PMC4746309  PMID: 26904064
Chinese cabbage; Brassica rapa; adaxial-abaxial polarity; genetic variation; purifying selection; leafy head
24.  Determinants of Dengue Virus NS4A Protein Oligomerization 
Journal of Virology  2015;89(12):6171-6183.
ABSTRACT
Flavivirus NS4A protein induces host membrane rearrangement and functions as a replication complex component. The molecular details of how flavivirus NS4A exerts these functions remain elusive. Here, we used dengue virus (DENV) as a model to characterize and demonstrate the biological relevance of flavivirus NS4A oligomerization. DENV type 2 (DENV-2) NS4A protein forms oligomers in infected cells or when expressed alone. Deletion mutagenesis mapped amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]) of NS4A as the major determinant for oligomerization, while the N-terminal 50 residues contribute only slightly to the oligomerization. Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids are important for viral replication. Among the 15 mutated NS4A residues, 2 amino acids (E50A and G67A) are located within TMD1. Both E50A and G67A attenuated viral replication, decreased NS4A oligomerization, and reduced NS4A protein stability. In contrast, NS4A oligomerization was not affected by the replication-defective mutations (R12A, P49A, and K80A) located outside TMD1. trans complementation experiments showed that expression of wild-type NS4A alone was not sufficient to rescue the replication-lethal NS4A mutants. However, the presence of DENV-2 replicons could partially restore the replication defect of some lethal NS4A mutants (L26A and K80A), but not others (L60A and E122A), suggesting an unidentified mechanism governing the outcome of complementation in a mutant-dependent manner. Collectively, the results have demonstrated the importance of TMD1-mediated NS4A oligomerization in flavivirus replication.
IMPORTANCE We report that DENV NS4A forms oligomers. Such NS4A oligomerization is mediated mainly through amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]). The biological importance of NS4A oligomerization is demonstrated by results showing that mutations of flavivirus conserved residues (E50A and G67A located within TMD1) reduced the oligomerization and stability of the NS4A protein, leading to attenuated viral replication. A systematic mutagenesis analysis demonstrated that flavivirus conserved NS4A residues are important for DENV replication. A successful trans complementation of replication-lethal NS4A mutant virus requires wild-type NS4A in the context of the viral replication complex. The wild-type NS4A protein alone is not sufficient to rescue the replication defect of NS4A mutants. Intriguingly, distinct NS4A mutants yielded different complementation outcomes in the replicon-containing cells. Overall, the study has enhanced our understanding of flavivirus NS4A at the molecular level. The results also suggest that inhibitor blocking of NS4A oligomerization could be explored for antiviral drug discovery.
doi:10.1128/JVI.00546-15
PMCID: PMC4474302  PMID: 25833044
25.  Impact of Timing following Acute Myocardial Infarction on Efficacy and Safety of Bone Marrow Stem Cells Therapy: A Network Meta-Analysis 
Stem Cells International  2015;2016:1031794.
Background. The optimal timing for Bone Marrow Stem Cells (BMCs) therapy following acute myocardial infarction (AMI) remains unclear. Aims. To synthesize the evidence from trials using a multiple-treatment comparison method, thereby permitting a broader comparison across multiple timing of BMCs therapy. Methods and Results. Randomized controlled trials in patients with AMI receiving BMCs therapy were identified from PubMed, Ovid LWW, BIOSIS Previews, and the Cochrane Library through January 2015. 2 035 patients of 31 studies included in our analysis were allocated to 5 groups' treatments: 1~3 days, 4~7 days, 8~14 days, 15~30 days, or placebo/control group. The multiple-treatment meta-analysis showed that 4~7 days' group could lead to significantly increased left ventricular ejection fraction (LVEF) as compared with control (mean of MDs and 95% CI: 6 months, 3.05 (0.92~5.25); 12 months, 4.18 (2.30~5.84)). Only 4~7 days led to significant reduction of MACEs compared with control (OR and 95% CI 0.34 (0.13~0.96)) for 12-months follow-up. In simulated comparisons, the 4~7 days' group ranked better than other timing groups for improvement of LVEF or reduction of the incidence of major adverse cardiac events. Conclusions. 4~7 days after AMI might be the optimal timing for cell therapy in terms of efficacy or safety.
doi:10.1155/2016/1031794
PMCID: PMC4691493  PMID: 26783397

Results 1-25 (159)