PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Key pathways and genes controlling the development and progression of clear cell renal cell carcinoma (ccRCC) based on gene set enrichment analysis 
Background
Clear-cell renal cell carcinoma (ccRCC) is one of the most common types of kidney cancer in adults; however, its causes are not completely understood. The study was designed to filter the key pathways and genes associated with the occurrence or development of ccRCC, acquaint its pathogenesis at gene and pathway level, to provide more theory evidence and targeted therapy for ccRCC.
Methods
Gene set enrichment analysis (GSEA) and meta-analysis (Meta) were used to screen the critical pathways and genes which may affect the occurrence and progression of ccRCC on the transcription level. Corresponding pathways of significant genes were obtained with the online website DAVID (http://david.abcc.ncifcrf.gov/).
Results
Thirty seven consistent pathways and key genes in these pathways related to ccRCC were obtained with combined GSEA and meta-analysis. These pathways were mainly involved in metabolism, organismal systems, cellular processes and environmental information processing.
Conclusion
The gene pathways that we identified could provide insight concerning the development of ccRCC. Further studies are needed to determine the biological function for the positive genes.
doi:10.1007/s11255-013-0511-2
PMCID: PMC3955485  PMID: 23943374
Clear-cell renal cell carcinoma (ccRCC); Gene set enrichment analysis; Meta-analysis; Key pathways
2.  Protein phosphatase PP6 is required for homology-directed repair of DNA double-strand breaks 
Cell Cycle  2011;10(9):1411-1419.
DNA double-strand breaks (DSBs) are among the most lethal lesions associated with genome stability, which, when destabilized, predisposes organs to cancers. DSBs are primarily fixed either with little fidelity by non-homologous end joining (NHEJ) repair or with high fidelity by homology-directed repair (HDR). The phosphorylated form of H2AX on serine 139 (γ-H2AX) is a marker of DSBs. In this study, we explored if the protein phosphatase PP6 is involved in DSB repair by depletion of its expression in human cancer cell lines, and determined PP6 expression in human breast cancer tissues by immunohistochemistry staining. We found that bacterially produced PP6c (the catalytic subunit of PP6)-containing heterotrimeric combinations exhibit phosphatase activity against γ-H2AX in the in vitro phosphatase assays. Depletion of PP6c or PP6R2 led to persistent high levels of γ-H2AX after DNA damage and a defective HDR. Chromatin immunoprecipitation assays demonstrated that PP6c was recruited to the region adjacent to the DSB sites. Expression of PP6c, PP6R2 and PP6R3 in human breast tumors was significantly lower than those in benign breast diseases. Taken together, our results suggest that γ-H2AX is a physiological substrate of PP6 and PP6 is required for HDR and its expression may harbor a protective role during the development of breast cancer.
doi:10.4161/cc.10.9.15479
PMCID: PMC3117043  PMID: 21451261
protein phosphatase; PP6; γ-H2AX; DNA double-strand break; homology-directed repair
3.  A PP4-phosphatase complex dephosphorylates γ-H2AX generated during DNA replication 
Molecular cell  2008;31(1):33-46.
Summary
The histone H2A variant H2AX is rapidly phosphorylated in response to DNA double-stranded breaks to produce γ-H2AX. γ-H2AX stabilizes cell cycle checkpoint proteins and DNA repair factors at the break site. We previously found that the protein phosphatase PP2A is required to resolve γ-H2AX foci and complete DNA repair after exogenous DNA damage. Here we describe a three-protein PP4 phosphatase complex in mammalian cells, containing PP4C, PP4R2 and PP4R3β, that specifically dephosphorylates ATR-mediated γ-H2AX generated during DNA replication. PP4 efficiently dephosphorylates γ-H2AX within mononucleosomes in vitro. The effect of PP4 on γ-H2AX is independent of ATR and checkpoint kinase activity. When the PP4 complex is silenced, repair of DNA replication mediated breaks is inefficient, and cells are hypersensitive to DNA replication inhibitors, but not radiomimetic drugs. Therefore γ-H2AX elimination at DNA damage foci is required for DNA damage repair, but accomplishing this task involves distinct phosphatases with potentially overlapping roles.
doi:10.1016/j.molcel.2008.05.016
PMCID: PMC3242369  PMID: 18614045
4.  Protein Phosphatase 6 Interacts with the DNA-Dependent Protein Kinase Catalytic Subunit and Dephosphorylates γ-H2AX▿ †  
Molecular and Cellular Biology  2010;30(6):1368-1381.
The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G2/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (γ-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of γ-H2AX, the dissolution of IR-induced foci, and release from the G2/M checkpoint in vivo.
doi:10.1128/MCB.00741-09
PMCID: PMC2832507  PMID: 20065038

Results 1-4 (4)