PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Quantitative Hepatitis B Core Antibody Level Is a New Predictor for Treatment Response In HBeAg-positive Chronic Hepatitis B Patients Receiving Peginterferon 
Theranostics  2015;5(3):218-226.
A recent study revealed that quantitative hepatitis B core antibody (qAnti-HBc) level could serve as a novel marker for predicting treatment response. In the present study, we further investigated the predictive value of qAnti-HBc level in HBeAg-positive patients undergoing PEG-IFN therapy. A total of 140 HBeAg-positive patients who underwent PEG-IFN therapy for 48 weeks and follow-up for 24 weeks were enrolled in this study. Serum samples were taken every 12 weeks post-treatment. The predictive value of the baseline qAnti-HBc level for treatment response was evaluated. Patients were further divided into 2 groups according to the baseline qAnti-HBc level, and the response rate was compared. Additionally, the kinetics of the virological and biochemical parameters were analyzed. Patients who achieved response had a significantly higher baseline qAnti-HBc level (serological response [SR], 4.52±0.36 vs. 4.19±0.58, p=0.001; virological response [VR], 4.53±0.35 vs. 4.22±0.57, p=0.005; combined response [CR], 4.50±0.36 vs. 4.22±0.58, p=0.009)). Baseline qAnti-HBc was the only parameter that was independently correlated with SR (p=0.008), VR (p=0.010) and CR(p=0.019). Patients with baseline qAnti-HBc levels ≥30,000 IU/mL had significantly higher response rates, more HBV DNA suppression, and better hepatitis control in PEG-IFN treatment. In conclusion, qAnti-HBc level may be a novel biomarker for predicting treatment response in HBeAg-positive patients receiving PEG-IFN therapy.
doi:10.7150/thno.10636
PMCID: PMC4279186  PMID: 25553110
quantitative anti-HBc;  chronic hepatitis B; PEG-IFN treatment; treatment response prediction; pretreatment biomarker.
2.  HGF and Direct Mesenchymal Stem Cells Contact Synergize to Inhibit Hepatic Stellate Cells Activation through TLR4/NF-kB Pathway 
PLoS ONE  2012;7(8):e43408.
Aims
Bone marrow-derived mesenchymal stem cells (BMSCs) can reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs.
Methods
We used BMSCs directly and indirectly co-culture system with HSCs to evaluate the anti-fibrosis effect of BMSCs. Cell proliferation and activation were examined in the presence of BMSCs and HGF. c-met was knockdown in HSCs to evaluate the effect of HGF secreted by BMSCs. The TLR4 and Myeloid differentiation primary response gene 88(MyD88) mRNA levels and the NF-kB pathway activation were determined by real-time PCR and western blotting analyses. The effect of BMSCs on HSCs activation was investigated in vitro in either MyD88 silencing or overexpression in HSCs. Liver fibrosis in rats fed CCl4 with and without BMSCs supplementation was compared. Histopathological examinations and serum biochemical tests were compared between the two groups.
Results
BMSCs remarkably inhibited the proliferation and activation of HSCs by interfering with LPS-TLR4 pathway through a cell–cell contact mode that was partially mediated by HGF secretion. The NF-kB pathway is involved in HSCs activation inhibition by BMSCs. MyD88 over expression reduced the BMSC inhibition of NF-kB luciferase activation. BMSCs protected liver fibrosis in vivo.
Conclusion
BMSCs modulate HSCs in vitro via TLR4/MyD88/NF-kB signaling pathway through cell–cell contact and secreting HGF. BMSCs have therapeutic effects on cirrhosis rats. Our results provide new insights into the treatment of hepatic fibrosis with BMSCs.
doi:10.1371/journal.pone.0043408
PMCID: PMC3426540  PMID: 22927965
3.  Upregulator of Cell Proliferation Predicts Poor Prognosis in Hepatocellular Carcinoma and Contributes to Hepatocarcinogenesis by Downregulating FOXO3a 
PLoS ONE  2012;7(7):e40607.
Objective
The goal of the present study was to investigate the potential correlation between the expression level of upregulator of cell proliferation (URGCP/URG4) and the prognosis of hepatocellular carcinoma (HCC), and to examine the biological function of URGCP/URG4 in the progression of HCC, to better understand its underlying molecular mechanism in hepatic tumorigenesis.
Design
URGCP/URG4 expression was analyzed in 15 HCC cell lines, in 278 archived paraffin-embedded HCC sections, and in 10 pairs of fresh HCC tumor and para-tumor non-cancerous tissues using immunohistochemistry (IHC) and Western blotting analysis (WB). The effect of URGCP/URG4 on cell proliferation and tumorigenesis was examined in vitro and in vivo. WB and luciferase reporter analyses were performed to identify the effects of URGCP/URG4-overexpression or -knockdown on expression of cell cycle regulators and transcriptional activity of FOXO3a.
Results
IHC results revealed an upregulation of URGCP/URG4 in all HCC cell lines and fresh HCC samples as compared with normal liver cells and para-tumor tissues, respectively. URGCP/URG4 was also expressed at a high level in 122 of the 278 (43.8%) archived HCC specimens. The expression level of URGCP/URG4 was significantly correlated with clinical staging and poor patient survival of HCC in the study cohort, and in various clinical subgroups. Strikingly, ectopic expression of URGCP/URG4 induced proliferation and anchorage-independent growth of HCC cells, while silencing of URGCP/URG4 had the opposite effect. Furthermore, URGCP/URG4 overexpression in HCC cells increased cellular entry into the G1/S transitional phase, associated with downregulation of p27Kip1 and p21Cip1 and upregulation of cyclin D1. These effects were accompanied by enhanced Akt activity and reduced FOXO3a transcriptional activity.
Conclusions
URGCP/URG4 plays an important role in promoting proliferation and tumorigenesis of HCC and may represent a novel prognostic biomarker and therapeutic target for this disease.
doi:10.1371/journal.pone.0040607
PMCID: PMC3398045  PMID: 22815774

Results 1-3 (3)