Search tips
Search criteria

Results 1-25 (186)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
2.  Addressing overdiagnosis and overtreatment in cancer: a prescription for change 
The Lancet. Oncology  2014;15(6):e234-e242.
A vast range of disorders—from indolent to fast-growing lesions—are labelled as cancer. Therefore, we believe that several changes should be made to the approach to cancer screening and care, such as use of new terminology for indolent and precancerous disorders. We propose the term indolent lesion of epithelial origin, or IDLE, for those lesions (currently labelled as cancers) and their precursors that are unlikely to cause harm if they are left untreated. Furthermore, precursors of cancer or high-risk disorders should not have the term cancer in them. The rationale for this change in approach is that indolent lesions with low malignant potential are common, and screening brings indolent lesions and their precursors to clinical attention, which leads to overdiagnosis and, if unrecognised, possible overtreatment. To minimise that potential, new strategies should be adopted to better define and manage IDLEs. Screening guidelines should be revised to lower the chance of detection of minimal-risk IDLEs and inconsequential cancers with the same energy traditionally used to increase the sensitivity of screening tests. Changing the terminology for some of the lesions currently referred to as cancer will allow physicians to shift medicolegal notions and perceived risk to reflect the evolving understanding of biology, be more judicious about when a biopsy should be done, and organise studies and registries that offer observation or less invasive approaches for indolent disease. Emphasis on avoidance of harm while assuring benefit will improve screening and treatment of patients and will be equally effective in the prevention of death from cancer.
PMCID: PMC4322920  PMID: 24807866
3.  Targeted Androgen Pathway Suppression in Localized Prostate Cancer: A Pilot Study 
Journal of Clinical Oncology  2013;32(3):229-237.
Ligand-mediated activation of the androgen receptor (AR) is critical for prostate cancer (PCa) survival and proliferation. The failure to completely ablate tissue androgens may limit suppression of PCa growth. We evaluated combinations of CYP17A and 5-α-reductase inhibitors for reducing prostate androgen levels, AR signaling, and PCa volumes.
Patients and Methods
Thirty-five men with intermediate/high-risk clinically localized PCa were randomly assigned to goserelin combined with dutasteride (ZD), bicalutamide and dutasteride (ZBD), or bicalutamide, dutasteride, and ketoconazole (ZBDK) for 3 months before prostatectomy. Controls included patients receiving combined androgen blockade with luteinizing hormone-releasing hormone agonist and bicalutamide. The primary outcome measure was tissue dihydrotestosterone (DHT) concentration.
Prostate DHT levels were substantially lower in all experimental arms (0.02 to 0.04 ng/g v 0.92 ng/g in controls; P < .001). The ZBDK group demonstrated the greatest percentage decline in serum testosterone, androsterone, and dehydroepiandrosterone sulfate (P < .05 for all). Staining for AR and the androgen-regulated genes prostate-specific antigen and TMPRSS2 was strongly suppressed in benign glands and moderately in malignant glands (P < .05 for all). Two patients had pathologic complete response, and nine had ≤ 0.2 cm3 of residual tumor (defined as a near-complete response), with the largest numbers of complete and near-complete responses in the ZBDK group.
Addition of androgen synthesis inhibitors lowers prostate androgens below that achieved with standard therapy, but significant AR signaling remains. Tissue-based analysis of steroids and AR signaling is critical to informing the search for optimal local and systemic control of high-risk prostate cancer.
PMCID: PMC3887479  PMID: 24323034
4.  Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing 
Brain  2013;137(1):255-267.
Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P < 0.001). This enables informative evaluation of anatomical regions outside of the hippocampus. To assess the morphology of brain microvasculature far more rigorously than what is possible using semi-quantitative pathological scoring, we applied digital pathological (Aperio ScanScope) methods on a subsample of frontal cortex sections from hippocampal sclerosis of ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0.03), and larger vessel areas (P < 0.03) than controls. Unlike the arterioles, CD34-immunoreactive capillaries had dimensions that were unchanged in cases with hippocampal sclerosis of ageing versus controls. Arteriolosclerosis appears specific to hippocampal sclerosis of ageing brains, because brains with Alzheimer’s disease pathology did not show the same morphological alterations. We conclude that there may be a pathogenetic change in aged human brain arterioles that impacts multiple brain areas and contributes to hippocampal sclerosis of ageing.
PMCID: PMC3891448  PMID: 24271328
TDP-43; NACC; FTLD; SMA; HS-Ageing
5.  Hippocampal sclerosis of aging is a key Alzheimer's disease mimic: clinical-pathologic correlations and comparisons with both Alzheimer's disease and non-tauopathic frontotemporal lobar degeneration 
Hippocampal sclerosis of aging (HS-Aging) neuropathology was observed in more than 15% of aged individuals in prior studies. However, much remains unknown about the clinical correlates of HS-Aging pathology or the association(s) between HS-Aging, Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD) pathology. Clinical and comorbid pathological features linked to HS-Aging pathology were analyzed using National Alzheimer's Coordinating Center (NACC) data. From autopsy data extending back to 1990 (N=9,817 participants), the neuropathologic diagnoses were evaluated from American AD Centers (ADCs). Among participants who died between 2005-2012 (N=1,422), additional analyses identified clinical and pathological features associated with HS-Aging pathology. We also compared cognitive testing and longevity outcomes between HS-Aging cases and a subsample with non-tauopathy FTLD (N=210). Reporting of HS pathology increased dramatically among ADCs in recent years, to nearly 20% of autopsies in 2012. Participants with relatively “pure” HS-Aging pathology were often diagnosed clinically as having probable (68%) or possible (15%) AD. However, the co-occurrence of HS-Aging pathology and AD neuropathology (AD-NP) did not indicate any pattern of correlation between the two pathologies. Compared other pathologies, participants with HS-Aging pathology had higher overall cognitive/functional ability (versus AD-NP) and verbal fluency (versus both AD-NP and FTLD) but similar episodic memory impairment at one clinic visit 2 -5 years prior to death. Patients with HS-Aging live considerably longer than patients with non-tauopathy FTLD. We conclude that the manifestations of HS-Aging, increasingly recognized in recent years, probably indicate a separate disease process of direct relevance to patient care, dementia research, and clinical trials.
PMCID: PMC3946156  PMID: 24270205
TDP-43; oldest-old; hippocampus; human; APOE
6.  Self-reported head injury and risk of late-life impairment and AD pathology in an AD Center cohort 
To evaluate the relationship between self-reported head injury and cognitive impairment, dementia, mortality, and Alzheimer’s (AD)-type pathological changes.
Clinical and neuropathological data from participants enrolled in a longitudinal study of aging and cognition (N=649) were analyzed to assess the chronic effects of self-reported head injury.
The effect of self-reported head injury on clinical state depends on age at assessment: for a 1-year increase in age, the OR^ for transition to clinical MCI at the next visit for participants with a history of head injury is 1.21 and 1.34 for transition from MCI to dementia. Without respect to age, head injury increases the odds of mortality ( OR^=1.54). Head injury increases the odds of a pathological diagnosis of AD for men ( OR^=1.47) but not women ( OR^=1.18). Men with head injury have higher mean amyloid plaque counts in the neocortex and entorhinal cortex than men without.
Conclusions: Self-reported head injury is associated with earlier onset, increased risk of cognitive impairment and dementia, increased risk of mortality, and AD-type pathological changes.
PMCID: PMC4057973  PMID: 24401791
head injury; Alzheimer’s disease; neuropathology; dementia; cognition
7.  Pten Null Prostate Epithelium Promotes Localized Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Tumor Initiation and Progression 
Molecular and Cellular Biology  2014;34(11):2017-2028.
Chronic inflammation is known to be associated with prostate cancer development, but how epithelium-associated cancer-initiating events cross talk to inflammatory cells during prostate cancer initiation and progression is largely unknown. Using the Pten null murine prostate cancer model, we show an expansion of Gr-1+ CD11b+ myeloid-derived suppressor cells (MDSCs) occurring intraprostatically immediately following epithelium-specific Pten deletion without expansion in hematopoietic tissues. This MDSC expansion is accompanied by sustained immune suppression. Prostatic Gr-1+ CD11b+ cells, but not those isolated from the spleen of the same tumor-bearing mice, suppress T cell proliferation and express high levels of Arginase 1 and iNOS. Mechanistically, the loss of PTEN in the epithelium leads to a significant upregulation of genes within the inflammatory response and cytokine-cytokine receptor interaction pathways, including Csf1 and Il1b, two genes known to induce MDSC expansion and immunosuppressive activities. Treatment of Pten null mice with the selective CSF-1 receptor inhibitor GW2580 decreases MDSC infiltration and relieves the associated immunosuppressive phenotype. Our study indicates that epithelium-associated tumor-initiating events trigger the secretion of inflammatory cytokines and promote localized MDSC expansion and immune suppression, thereby promoting tumor progression.
PMCID: PMC4019050  PMID: 24662052
8.  Quantitative neuropathological assessment to investigate cerebral multi-morbidity 
The aging brain is characterized by the simultaneous presence of multiple pathologies, and the prevalence of cerebral multi-morbidity increases with age. To understand the impact of each subtype of pathology and the combined effects of cerebral multi-morbidity on clinical signs and symptoms, large clinico-pathological correlative studies have been performed. However, such studies are often based on semi-quantitative assessment of neuropathological hallmark lesions. Here, we discuss some of the new methods for high-throughput quantitative neuropathological assessment. These methods combine increased quantitative rigor with the added technical capacity of computers and networked analyses. There are abundant new opportunities - with specific techniques that include slide scanners, automated microscopes, and tissue microarrays - and also potential pitfalls. We conclude that quantitative and digital neuropathologic approaches will be key resources to further elucidate cerebral multi-morbidity in the aged brain and also hold the potential for changing routine neuropathologic diagnoses.
PMCID: PMC4247208  PMID: 25435922
9.  TMPRSS2 Is a Host Factor That Is Essential for Pneumotropism and Pathogenicity of H7N9 Influenza A Virus in Mice 
Journal of Virology  2014;88(9):4744-4751.
Cleavage of the hemagglutinin (HA) by host proteases is essential for the infectivity of influenza viruses. Here, we analyzed the role of the serine protease TMPRSS2, which activates HA in the human respiratory tract, in pathogenesis in a mouse model. Replication of the human H7N9 isolate A/Anhui/1/13 and of human H1N1 and H3N2 viruses was compared in TMPRSS2 knockout (TMPRSS2−/−) and wild-type (WT) mice. Knockout of TMPRSS2 expression inhibited H7N9 influenza virus replication in explants of murine tracheas, bronchi, and lungs. H1N1 virus replication was also strongly suppressed in airway explants of TMPRSS2−/− mice, while H3N2 virus replication was only marginally affected. H7N9 and H1N1 viruses were apathogenic in TMPRSS2−/− mice, whereas WT mice developed severe disease with mortality rates of 100% and 20%, respectively. In contrast, all H3N2 infected TMPRSS2−/− and WT mice succumbed to lethal infection. Cleavage analysis showed that H7 and H1 are efficiently activated by TMPRSS2, whereas H3 is less susceptible to the protease. Our data demonstrate that TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 and H1N1 influenza virus in mice. In contrast, replication of H3N2 virus appears to depend on another, not yet identified protease, supporting the concept that human influenza viruses differ in protease specificity.
IMPORTANCE Cleavage of the hemagglutinin (HA) by host proteases is essential for the infectivity of influenza virus, but little is known about its relevance for pathogenesis in mammals. Here, we show that knockout mice that do not express the HA-activating protease TMPRSS2 are resistant to pulmonary disease with lethal outcome when infected with influenza A viruses of subtypes H7N9 and H1N1, whereas they are not protected from lethal H3N2 virus infection. These findings demonstrate that human influenza viruses differ in protease specificity, and that expression of the appropriate protease in respiratory tissues is essential for pneumotropism and pathogenicity. Our observations also demonstrate that HA-activating proteases and in particular TMPRSS2 are promising targets for influenza therapy.
PMCID: PMC3993819  PMID: 24522916
10.  Development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization/selected reaction monitoring/mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of keto-androgens in human serum✩, ✩✩ 
The Journal of steroid biochemistry and molecular biology  2013;138:10.1016/j.jsbmb.2013.06.014.
Prostate cancer is the most frequently diagnosed form of cancer in males in the United States. The disease is androgen driven and the use of orchiectomy or chemical castration, known as androgen deprivation therapy (ADT) has been employed for the treatment of advanced prostate cancer for over 70 years. Agents such as GnRH agonists and non-steroidal androgen receptor antagonists are routinely used in the clinic, but eventually relapse occurs due to the emergence of castration-resistant prostate cancer. With the appreciation that androgen signaling still persists in these patients and the development of new therapies such as abiraterone and enzalutamide that further suppresses androgen synthesis or signaling, there is a renewed need for sensitive and specific methods to quantify androgen precursor and metabolite levels to assess drug efficacy. We describe the development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization selected reaction monitoring mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of serum keto-androgens and their sulfate and glucuronide conjugates using Girard-T oxime derivatives. The method is robust down to 0.2–4 pg on column, depending on the androgen metabolite quantified, and can also quantify dehydroepiandrosterone sulfate (DHEA-S) in only 1 μL of serum. The clinical utility of this method was demonstrated by analyzing serum androgens from patients enrolled in a clinical trial assessing combinations of pharmacological agents to maximally suppress gonadal and adrenal androgens (Targeted Androgen Pathway Suppression, TAPS clinical trial). The method was validated by correlating the results obtained with a hydroxylamine derivatization procedure coupled with tandem mass spectrometry using selected reaction monitoring that was conducted in an independent laboratory.
PMCID: PMC3866616  PMID: 23851165
Prostate cancer; Androgen metabolome; Mass spectrometry
11.  Characterization of Osteoblastic and Osteolytic Proteins in Prostate Cancer Bone Metastases 
The Prostate  2013;73(9):932-940.
Approximately 90% of patients who die of Prostate Cancer (PCa) have bone metastases, which promote a spectrum of osteoblastic, osteolytic or mixed bone responses. Numerous secreted proteins have been reported to promote osteoblastic or osteolytic bone responses. We determined whether previously identified and/or novel proteins were associated with the osteoblastic or osteolytic response in clinical specimens of PCa bone metastases.
Gene expression was analyzed on 14 PCa metastases from 11 patients by microarray profiling and qRT-PCR, and protein expression was analyzed on 33 PCa metastases from 30 patients by immunohistochemistry on highly osteoblastic and highly osteolytic bone specimens.
Transcript and protein levels of BMP-2, BMP-7, DKK-1, ET-1 and Sclerostin were not significantly different between osteoblastic and osteolytic metastases. However, levels of OPG, PGK1 and Substance P proteins were increased in osteoblastic samples. In addition, Emu1, MMP-12 and sFRP-1 were proteins identified with a novel role of being associated with either the osteoblastic or osteolytic bone response.
This is the first detailed analysis of bone remodeling proteins in human specimens of PCa bone metastases. Three proteins not previously shown to be involved may have a role in the PCa bone response. Furthermore, our data suggests that the relative expression of numerous, rather than a single, bone remodeling proteins determine the bone response in PCa bone metastases.
PMCID: PMC4214278  PMID: 23334979
prostate cancer; osteoblastic; osteolytic; bone; metastasis
12.  Prostate Cancer Characteristics Associated with Response to Pre-Receptor Targeting of the Androgen Axis 
PLoS ONE  2014;9(10):e111545.
Factors influencing differential responses of prostate tumors to androgen receptor (AR) axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth.
We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy.
In LuCaP35 tumors (intra-tumoral T:DHT ratio 2∶1) dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015). In LuCaP96 tumors (T:DHT 10∶1), survival was not improved despite similar DHT reduction (0.02 ng/gm). LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both), reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors), and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively), persistent suppression of intra-tumoral DHT, and 6–8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts.
Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and should be validated in additional models.
PMCID: PMC4214744  PMID: 25356728
13.  VEGF/Neuropilin-2 Regulation of Bmi-1 and Consequent Repression of IGF-1R Define a Novel Mechanism of Aggressive Prostate Cancer 
Cancer discovery  2012;2(10):906-921.
We demonstrate that the VEGF receptor, neuropilin-2 (NRP2) is associated with high-grade, PTEN-null prostate cancer and that its expression in tumor cells is induced by PTEN loss as a consequence of c-Jun activation. VEGF/NRP2 signaling represses IGF-1R expression and signaling and the mechanism involves Bmi-1-mediated transcriptional repression of the IGF-1R. This mechanism has significant functional and therapeutic implications that were evaluated. IGF-1R expression correlates with PTEN and inversely with NRP2 in prostate tumors. NRP2 is a robust biomarker for predicting response to IGF-1R therapy because prostate carcinomas that express NRP2 exhibit low levels of IGF-1R. Conversely, targeting NRP2 is only modestly effective because NRP2 inhibition induces compensatory IGF-1R signaling. Inhibition of both NRP2 and IGF-1R, however, completely blocks tumor growth in vivo.
PMCID: PMC4205964  PMID: 22777769
Prostate Cancer; VEGF; Neuropilin; IGF-1R; Bmi-1; PTEN
14.  Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways 
Oncotarget  2014;5(20):9939-9951.
Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM+/CD45− cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention.
PMCID: PMC4259449  PMID: 25301725
Prostate cancer; dormancy; metastasis; p38; gene expression
15.  Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(6):10.4049/jimmunol.1300342.
Recent reports have highlighted greater complexity, plasticity and functional diversity of mononuclear phagocytes (MPCs), including monocytes, macrophages and dendritic cells (DCs), in our organs, than previously understood. The functions and origins of MPCs resident within healthy organs, especially in the kidney, are less well understood, while studies suggest they play roles in disease states distinct from recruited monocytes. We developed an unbiased approach using flow cytometry to analyze MPCs residing in the normal mouse kidney, and identified five discrete subpopulations according to CD11b/CD11c expression as well as F4/80, CD103, CD14, CD16 and CD64 expression. In addition to distinct marker profiles, these subpopulations have different lineages and expression of genes involved in tissue homeostasis, including angiogenesis. Among them, the CD11bint CD11cint F4/80hi subpopulation notably exhibited high capacity to produce a representative anti-inflammatory cytokine, IL-10. Each subpopulation had different degrees of both macrophage (phagocytosis) and DC (antigen presentation) capacities, with a tendency to promote differentiation of regulatory T cells, while two of these showed expression of transcription factors reported to be highly expressed by classical DCs, and proclivity to exit the kidney following stimulation with LPS. In summary, resident kidney MPCs comprise discrete subpopulations, which cannot be simply classified into the conventional entities, and they produce anti-inflammatory and tissue-homeostatic factors to differing degrees.
PMCID: PMC3808972  PMID: 23956422
16.  The androgen/androgen receptor axis in prostate cancer 
Current opinion in oncology  2012;24(3):251-257.
Purpose of Review
This review highlights recently discovered mechanisms that sustain castration-resistant prostate cancer (CRPC) growth and describes advances in CRPC therapeutics.
Recent Findings
Recent reports have shed new light on the molecular processes underlying CRPC survival during androgen deprivation therapy (ADT). This report summarizes recent findings and comments on their clinical relevance. Included in this review is a discussion on molecular mechanisms that regulate AR signaling in normal prostate epithelium and CRPC, biologically significant differences in the androgen-regulated transcriptional programs of androgen-dependent (AD) prostate cancer and CRPC, and recent discoveries involving de novo androgen production and transport. We review the status and results of current clinical trials and finally, discuss the implications of evidence suggesting a declining importance of AR-signaling in prostate cancers with PTEN loss.
Advances in the understanding of AR signaling in CRPC have identified novel drug targets and improved the rational design of targeted therapy, while illuminating a subset of prostate cancers that may progress to become completely independent of the AR signaling program.
PMCID: PMC4161359  PMID: 22327838
Androgen receptor; castration-resistant prostate cancer; PTEN; androgen biosynthesis; androgen receptor splice variants; androgen pathway independent prostate cancer
17.  Chemotherapy-Induced Monoamine Oxidase Expression in Prostate Carcinoma Functions as a Cytoprotective Resistance Enzyme and Associates with Clinical Outcomes 
PLoS ONE  2014;9(9):e104271.
To identify molecular alterations in prostate cancers associating with relapse following neoadjuvant chemotherapy and radical prostatectomy patients with high-risk localized prostate cancer were enrolled into a phase I-II clinical trial of neoadjuvant chemotherapy with docetaxel and mitoxantrone followed by prostatectomy. Pre-treatment prostate tissue was acquired by needle biopsy and post-treatment tissue was acquired by prostatectomy. Prostate cancer gene expression measurements were determined in 31 patients who completed 4 cycles of neoadjuvant chemotherapy. We identified 141 genes with significant transcript level alterations following chemotherapy that associated with subsequent biochemical relapse. This group included the transcript encoding monoamine oxidase A (MAOA). In vitro, cytotoxic chemotherapy induced the expression of MAOA and elevated MAOA levels enhanced cell survival following docetaxel exposure. MAOA activity increased the levels of reactive oxygen species and increased the expression and nuclear translocation of HIF1α. The suppression of MAOA activity using the irreversible inhibitor clorgyline augmented the apoptotic responses induced by docetaxel. In summary, we determined that the expression of MAOA is induced by exposure to cytotoxic chemotherapy, increases HIF1α, and contributes to docetaxel resistance. As MAOA inhibitors have been approved for human use, regimens combining MAOA inhibitors with docetaxel may improve clinical outcomes.
PMCID: PMC4157741  PMID: 25198178
18.  A gain of function mutation in DHT synthesis in castration-resistant prostate cancer 
Cell  2013;154(5):1074-1084.
Growth of prostate cancer cells is dependent upon androgen stimulation of the androgen receptor (AR). Dihydrotestosterone (DHT), the most potent androgen, is usually synthesized in the prostate from testosterone secreted by the testis. Following chemical or surgical castration, prostate cancers usually shrink owing to testosterone deprivation. However, tumors often recur, forming castration-resistant prostate cancer (CRPC). Here, we show that CRPC sometimes expresses a gain-of-stability mutation leading to a gain-of-function in 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1), which catalyzes the initial rate-limiting step in the conversion of the adrenal-derived steroid dehydroepiandrosterone to DHT. The mutation (N367T) does not affect catalytic function, but it renders the enzyme resistant to ubiquitination and degradation, leading to profound accumulation. Whereas dehydroepiandrosterone conversion to DHT is usually very limited, expression of 367T accelerates this conversion and provides the DHT necessary to activate the AR. We suggest that 3βHSD1 is a valid target for the treatment of CRPC.
PMCID: PMC3931012  PMID: 23993097
19.  Androgen Action and Metabolism in Prostate Cancer 
PMCID: PMC4124858  PMID: 22453214
prostate cancer; castration resistant; androgen; androgen receptor; splice variant; steroidogenesis; intracrine; steroid transport
20.  Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease 
Acta neuropathologica  2013;126(2):161-177.
Hippocampal sclerosis of aging (HS-Aging) is a causative factor in a large proportion of elderly dementia cases. The current definition of HS-Aging rests on pathologic criteria: neuronal loss and gliosis in the hippocampal formation that is out of proportion to AD-type pathology. HS-Aging is also strongly associated with TDP-43 pathology. HS-Aging pathology appears to be most prevalent in the oldest-old: autopsy series indicate that 5–30 % of nonagenarians have HS-Aging pathology. Among prior studies, differences in study design have contributed to the study-to-study variability in reported disease prevalence. The presence of HS-Aging pathology correlates with significant cognitive impairment which is often misdiagnosed as AD clinically. The antemortem diagnosis is further confounded by other diseases linked to hippocampal atrophy including frontotemporal lobar degeneration and cerebrovascular pathologies. Recent advances characterizing the neurocognitive profile of HS-Aging patients have begun to provide clues that may help identify living individuals with HS-Aging pathology. Structural brain imaging studies of research subjects followed to autopsy reveal hippocampal atrophy that is substantially greater in people with eventual HS-Aging pathology, compared to those with AD pathology alone. Data are presented from individuals who were followed with neurocognitive and neuroradiologic measurements, followed by neuropathologic evaluation at the University of Kentucky. Finally, we discuss factors that are hypothesized to cause or modify the disease. We conclude that the published literature on HS-Aging provides strong evidence of an important and under-appreciated brain disease of aging. Unfortunately, there is no therapy or preventive strategy currently available.
PMCID: PMC3889169  PMID: 23864344
TDP43; TDP-43; TARDBP; Dementia; Aging; Neuropathology; FTLD; Epidemiology; Genetics; Cognition; Neuroradiology; MRI; Hippocampus; Pathology; Arteriolosclerosis; Cerebrovascular; Oldest-old
21.  APOE-ε2 and APOE-ε4 Correlate with Increased Amyloid Accumulation in Cerebral Vasculature 
The APOE ε4 allele correlates with increased risk of Alzheimer disease (AD) and increased parenchymal amyloid plaques. We tested how the APOE genotype correlated with cerebral amyloid angiopathy (CAA) by analyzing 371 brains for parenchymal and meningeal CAA in 4 brain regions (frontal, parietal, temporal, and occipital neocortex). The overall severity of CAA was highest in the occipital lobe. APOE-ε4/4 brains (n = 22) had the highest levels of CAA across regions. In the occipital lobe, nearly all APOE-ε4/4 cases were scored with the highest level of CAA (meninges, 95% of cases; parenchyma, 81%). In this brain region as in others, APOE-ε3/4 brains (n = 115) showed consistently less CAA that APOE-ε4/4 brains (meninges, 43%; parenchyma, 43%). APOE-ε3/3 brains (n = 182) showed even less CAA (meninges, 19%; parenchyma, 19%). Interestingly, APOE-ε2/3 cases (n = 42) had more CAA than APOE-ε3/3 (meninges, 44%; parenchyma, 32%), despite a reduced risk for AD in the APOE-ε2/3 individuals. APOE-ε4/4 brains also had the fewest regions without CAA, whereas APOE-ε3/3 brains had the most. Ordinal regression analyses demonstrated significant impacts of APOE-ε2 and APOE-ε4 on CAA in at least some brain region. These data demonstrate that APOE genotype correlations with Ab deposition in CAA only incompletely correspond to other AD-linked brain pathologies.
PMCID: PMC3715146  PMID: 23771217
Alzheimer disease; Apolipoprotein; CAA; Dementia; Hemorrhagic stroke; Risk factor
22.  Prognostic Value of ERG Oncoprotein in Prostate Cancer Recurrence and Cause-Specific Mortality 
The Prostate  2013;73(9):905-912.
ETS-related gene (ERG) protein is present in 40–70% of prostate cancer and is correlated with TMPRSS2-ERG gene rearrangements. This study evaluated ERG expression at radical prostatectomy to determine whether it was predictive of earlier relapse or prostate cancer-specific mortality (PCSM).
One hundred patients who underwent radical prostatectomy at Virginia Mason in Seattle between 1991 and 1997 were identified. Recurrence was confirmed by tissue diagnosis or radiographic signs. PCSM was confirmed by death certificates. Thirty-three patients with metastases or PCSM were matched to patients without recurrence at a 1:2 ratio. Paraffin embedded tissue was stained with two anti-ERG monoclonal antibodies, EPR3864 and 9FY. Nuclear expression intensity was evaluated as present/absent, on a 4-point relative intensity scale, and as a composite score (0–300).
Mean follow-up was 10.26 years. The two antibodies were highly correlated (P < 0.0001). Patients with higher ERG expression intensity and composite scores were significantly more likely to develop biochemical relapse, metastases, and PCSM. Kaplan–Meier survival curve analysis for the composite score of ERG expression revealed a significant association between higher ERG expression (EPR3864) and shorter PCa-specific survival (P = 0.047).
While the presence of ERG expression at the time of surgery was not predictive of earlier relapse or PCSM, the relative intensity and composite score for ERG expression was prognostic for the development of biochemical relapse, metastases, and PCSM. Quantitative ERG scoring may be useful to identify patients who would benefit from adjuvant treatment or closer follow-up, allowing more accurate individual patient treatment plans.
PMCID: PMC3677047  PMID: 23334893
TMPRSS2-ERG fusion protein; biomarker; metastasis; survival
23.  PPP2R2C loss promotes castration-resistance and is associated with increased prostate cancer-specific mortality 
Molecular cancer research : MCR  2013;11(6):568-578.
Metastatic prostate cancers generally rely on androgen receptor (AR) signaling for growth and survival, even following systemic androgen deprivation therapy (ADT). However, recent evidence suggests that some advanced prostate cancers escape ADT by utilizing signaling programs and growth factors that bypass canonical AR ligand-mediated mechanisms. We utilized an in vitro high-throughput RNAi screen to identify pathways in androgen-dependent prostate cancer cell lines whose loss of function promotes androgen ligand-independent growth. We identified 40 genes where knockdown promoted proliferation of both LNCaP and VCaP prostate cancer cells in the absence of androgen. Of these, 14 were down-regulated in primary and metastatic prostate cancer, including two subunits of the protein phosphatase 2 (PP2A) holoenzyme complex: PPP2R1A, a structural subunit with known tumor-suppressor properties in several tumor types; and PPP2R2C, a PP2A substrate-binding regulatory subunit that has not been previously identified as a tumor suppressor. We demonstrate that loss of PPP2R2C promotes androgen ligand depletion-resistant prostate cancer growth without altering AR expression or canonical AR-regulated gene expression. Furthermore, cell proliferation induced by PPP2R2C loss was not inhibited by the AR antagonist MDV3100, indicating that PPP2R2C loss may promote growth independently of known AR-mediated transcriptional programs. Immunohistochemical analysis of PPP2R2C protein levels in primary prostate tumors determined that low PPP2R2C expression significantly associated with an increased likelihood of cancer recurrence and cancer-specific mortality. These findings provide insights into mechanisms by which prostate cancers resist AR-pathway suppression, and support inhibiting PPP2R2C complexes or the growth pathway(s) activated by PPP2R2C as a therapeutic strategy.
PMCID: PMC3687002  PMID: 23493267
PP2A; PPP2R2C; castration-resistant prostate cancer; androgen-pathway independence
24.  Urinary TMPRSS2:ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the Canary Prostate Active Surveillance Study 
Active surveillance is used to manage low risk prostate cancer. Both PCA3 and TMRPSS2-ERG are promising biomarkers that may be associated with aggressive disease. This study examines the correlation of these biomarkers with higher cancer volume and grade determined at the time of biopsy in an active surveillance cohort.
Experimental Design
Post-DRE urine was collected prospectively as part of the multi-institutional Canary Prostate Active Surveillance Study (PASS). PCA3 and TMPRSS2-ERG levels were analyzed in urine collected at study entry. Biomarker scores were correlated to clinical and pathologic variables.
In 387 men, both PCA3 and TMPRSS2-ERG scores were significantly associated with higher volume disease. For a negative repeat biopsy, and 1–10%, 11–33%, ≥34% positive cores, median PCA3 and TMPRSS2-ERG scores increased incrementally (P < 0.005). Both PCA3 and TMPRSS2-ERG scores were also significantly associated with presence of high grade disease. For a negative repeat biopsy, Gleason 6 and Gleason ≥7 cancers, the median PCA3 and TMPRSS2-ERG scores also increased incrementally (P = 0.02 and P = 0.001, respectively). Using the marker scores as a continuous variables, the odds ratio for a biopsy in which cancer was detected versus a negative repeat biopsy (ref) on modeling was 1.41 (95% CI 1.07–1.85), P = 0.01 for PCA3 and 1.28 (95% CI 1.10–1.49), P = 0.001 for TMPRSS2-ERG.
For men on active surveillance both PCA3 and TMPRSS2-ERG appear to stratify risk of having aggressive cancer as defined by tumor volume or Gleason score.
PMCID: PMC3674574  PMID: 23515404
prostate cancer; active surveillance; biomarkers
25.  Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models 
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
PMCID: PMC4005958  PMID: 24795750
Alzheimer's disease; mouse models; neuropsychological assessment; behavior; cognition; APP mice; APP/PS1 mice; 3×TG-AD mice

Results 1-25 (186)