Search tips
Search criteria

Results 1-25 (58)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model 
PLoS ONE  2014;9(3):e92332.
It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.
PMCID: PMC3958549  PMID: 24642900
2.  Improving N-Glycan Coverage using HPLC with Electrospray Ionization at Sub-ambient Pressure with Mass Spectrometry 
Analytical chemistry  2012;84(21):9208-9213.
Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the low glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that, following liquid chromatographic separation on graphite columns, the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.
PMCID: PMC3491124  PMID: 23025344
3.  Trauma-associated Human Neutrophil Alterations Revealed by Comparative Proteomics Profiling 
Polymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown.
We applied 2D-LC-MS/MS based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls.
A total of 197 out of ~2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways.
Our data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs.
PMCID: PMC3737403  PMID: 23589343
human neutrophil; LC-MS/MS; Proteomics; Trauma; Genomics
4.  A fully automated multi-functional ultrahigh pressure liquid chromatography system for advanced proteome analyses 
Journal of proteome research  2012;11(8):4373-4381.
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations and online phosphopeptide enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtained from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments. The final reverse-phase separation of the three experiments is completely decoupled from all of function selection processes; thereby salts or acids from SCX or TiO2 column do not affect the efficiency of the reverse-phase separation.
PMCID: PMC3412908  PMID: 22709424
5.  Proteome Analyses of Strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp. under Culture Conditions Resulting in Enhanced H2 Production 
Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H2 production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H2 production.
PMCID: PMC3568600  PMID: 23204418
6.  Proteomic analysis of bronchoalveolar lavage fluid proteins from mice infected with Francisella tularensis ssp novicida 
Journal of proteome research  2012;11(7):3690-3703.
Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA); and Pseudomonas aeruginosa. The composition of BALF proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system, however the timing of their induction varied. Francisella tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection, however within 24 hours they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response, however this response is dimished by 24 hours. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.
PMCID: PMC3423085  PMID: 22663564
innate immunity; Francisella tularensis; proteomics; bronchoalveolar lavage fluid
7.  A Simple Sodium Dodecyl Sulfate-assisted Sample Preparation Method for LC-MS-based Proteomics Applications 
Analytical Chemistry  2012;84(6):2862-2867.
Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for biological sample extraction; however, the presence of this reagent in samples challenges LC-MS-based proteomics analyses because it can interfer with reversed-phase LC separations and electrospray ionization. This study reports a simple SDS-assisted proteomics sample preparation method facilitated by a novel peptide-level SDS removal step. In an initial demonstration, SDS was effectively (>99.9%) removed from peptide samples through ion substitution-mediated DS- precipitation using potassium chloride (KCl), and excellent peptide recovery (>95%) was observed for <20 μg peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage obtained for both mammalian tissues and bacterial samples was comparable to or better than that obtained for the same sample types prepared using standard proteomics preparation methods and analyzed using LC-MS/MS. These results suggest the SDS-assisted protocol is a practical, simple, and broadly applicable proteomics sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.
PMCID: PMC3310275  PMID: 22339560
SDS removal; KDS precipitation; proteomics; sample preparation; LC-MS
8.  Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans 
The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans. Our top-down analysis provided the confident identification of 55 proteins in the periplasm and characterized their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.
PMCID: PMC3608174  PMID: 23555055
9.  High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500 
As the resolution of analytical methods improves, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~ 400 – 500 is achievable using He/N2 or H2/N2 gas mixtures.
PMCID: PMC3581339  PMID: 23345059
10.  A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling 
Analytical and bioanalytical chemistry  2012;402(9):2923-2933.
Lipidomics is a critical part of metabolomics and aims to study all the lipids within a living system. We present here the development and evaluation of a sensitive capillary UPLC-MS method for comprehensive top-down/bottom-up lipid profiling. Three different stationary phases were evaluated in terms of peak capacity, linearity, reproducibility, and limit of quantification (LOQ) using a mixture of lipid standards representative of the lipidome. The relative standard deviations of the retention times and peak abundances of the lipid standards were 0.29% and 7.7%, respectively, when using the optimized method. The linearity was acceptable at >0.99 over 3 orders of magnitude, and the LOQs were sub-fmol. To demonstrate the performance of the method in the analysis of complex samples, we analyzed lipids extracted from a human cell line, rat plasma, and a model human skin tissue, identifying 446, 444, and 370 unique lipids, respectively. Overall, the method provided either higher coverage of the lipidome, greater measurement sensitivity, or both, when compared to other approaches of global, untargeted lipid profiling based on chromatography coupled with MS.
PMCID: PMC3531553  PMID: 22354571
ultra-performance liquid chromatography (UPLC); tandem mass spectrometry (MS/MS); electrospray ionization (ESI); top-down/bottom-up lipid profiling
11.  Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size 
Proteomics  2011;11(23):4569-4577.
Nanoparticle biological activity, biocompatibility and fate can be directly affected by layers of readily adsorbed host proteins in biofluids. Here, we report a study on the interactions between human blood plasma proteins and nanoparticles with a controlled systematic variation of properties using 18O-labeling and LC-MS-based quantitative proteomics. We developed a novel protocol to both simplify isolation of nanoparticle bound proteins and improve reproducibility. LC-MS analysis identified and quantified 88 human plasma proteins associated with polystyrene nanoparticles consisting of three different surface chemistries and two sizes, as well as, for four different exposure times (for a total of 24 different samples). Quantitative comparison of relative protein abundances was achieved by spiking an 18O-labeled “universal” reference into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantification across the entire sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive patterns that classified the nanoparticles based on their surface properties and size. In addition, temporal data indicated that the formation of the stable protein corona was at equilibrium within 5 min. The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility.
PMCID: PMC3252235  PMID: 21956884
Corona; Human plasma; LC-MS; Nanoparticle; Quantitative proteomics
12.  Enhanced top-down characterization of histone post-translational modifications 
Genome Biology  2012;13(10):R86.
Post-translational modifications (PTMs) of core histones work synergistically to fine tune chromatin structure and function, generating a so-called histone code that can be interpreted by a variety of chromatin interacting proteins. We report a novel online two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) platform for high-throughput and sensitive characterization of histone PTMs at the intact protein level. The platform enables unambiguous identification of 708 histone isoforms from a single 2D LC-MS/MS analysis of 7.5 µg purified core histones. The throughput and sensitivity of comprehensive histone modification characterization is dramatically improved compared with more traditional platforms.
PMCID: PMC3491414  PMID: 23034525
Saltless WCX-HILIC; top-down; histone; posttranslational modification
13.  Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells 
Proteomics  2011;11(10):2019-2026.
In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed-phase liquid chromatography strategy as a first dimension for two-dimensional liquid chromatography tandem mass spectrometry (“shotgun”) proteomic analysis of trypsin-digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed-phase liquid chromatography as a first-dimension fractionation strategy resulted in 1.8- and 1.6-fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed-phased strategy is an attractive alternative to strong cation exchange for two-dimensional shotgun proteomic analysis.
PMCID: PMC3120047  PMID: 21500348
2-D chromatography; Concatenation; Fractionation; High pH RP; Low pH RP; Technology
14.  Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer 
Proteomics. Clinical applications  2011;5(3-4):179-188.
We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens.
Experimental design
Twelve datasets are available, encompassing 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray analyses of multiple tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls were rigorously paired to avoid bias.
In total, 18,880 unique peptides were identified (PeptideProphet peptide error rate ≤1%), with 3884 and 1659 non-redundant protein groups identified in plasma and tissue datasets, respectively. Sixty-one of these protein groups overlapped between cancer plasma and cancer tissue.
Conclusions and clinical relevance
These data are of use for advancing our understanding of cancer biology, for software and quality control tool development, investigations of analytical variation in MS/MS data, and selection of proteotypic peptides for MRM-MS. The availability of these datasets will contribute positively to clinical proteomics.
PMCID: PMC3069718  PMID: 21448875
Breast cancer; Her2; mouse; proteome; transcriptome
15.  Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells 
PLoS Pathogens  2012;8(3):e1002584.
Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.
Author Summary
Dengue virus is one of the most aggressive human pathogens worldwide. It causes 50–100 million infections per year but there is no vaccine or antiviral that is currently effective against the disease. The virus is spread by Aedes aegyptii and Aedes albopictus mosquitoes and viral replication within the mosquito vector is required for transmission to a new human host. During this replication cycle, the virus causes significant changes to the membrane organization of infected cells. These virus-induced membrane alterations help to assemble arrays of viral replication factories and aid the virus to evade host antiviral defense mechanisms. Previously, much effort has been placed in trying to identify viral and cellular protein effectors that aid virus replication. In this study we have explored the role of lipids in the formation of these extensive membrane platforms in mosquito cells. Using high-resolution mass spectrometry we have profiled the lipid composition of dengue virus infected mosquito cells and compared it to uninfected cells. Through this we have identified several lipid classes that are differentially regulated during dengue virus replication. Using inhibitors of lipid biosynthesis we have also identified a lipid repertoire that is inhibitory to viral replication. Knowledge of how dengue virus utilizes cellular lipids and downstream signaling pathways to facilitate its replication will provide novel targets that could be utilized for developing effective antivirals. This study is also a forerunner for future comparative analyses of the human host and vector membrane environments required for viral replication.
PMCID: PMC3310792  PMID: 22457619
16.  Spectral Archives: Extending Spectral Libraries to Analyze both Identified and Unidentified Spectra 
Nature methods  2011;8(7):587-591.
MS/MS experiments generate multiple, nearly identical spectra of the same peptide in various laboratories, but proteomics researchers typically do not leverage the unidentified spectra produced in other labs to decode spectra generated in their own labs. We propose a spectral archives approach that clusters MS/MS datasets, representing similar spectra by a single consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and unidentified spectra in the same way and maintaining information about spectra of peptides shared across species and conditions. Thus archives offer both traditional library spectrum similarity-based search capabilities along with novel ways to analyze the data. By developing a clustering tool, MS-Cluster, we generated a spectral archive from ~1.18 billion spectra that greatly exceeds the size of existing spectral repositories. We advocate that publicly available data should be organized into spectral archives, rather than be analyzed as disparate datasets, as is mostly the case today.
PMCID: PMC3128193  PMID: 21572408
17.  Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles 
BMC Systems Biology  2011;5:194.
Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions.
To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand.
This study provides a deeper systems level insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.
PMCID: PMC3261843  PMID: 22133144
18.  Improved LC-MS/MS Spectral Counting Statistics by Recovering Low Scoring Spectra Matched to Confidently Identified Peptide Sequences 
Journal of proteome research  2010;9(11):5698-5704.
Spectral counting has become a popular method for LC-MS/MS based proteome quantification; however, this methodology is often not reliable when proteins are identified by a small number of spectra. Here we present a simple strategy to improve spectral counting based quantification for low abundance proteins by recovering low quality or low scoring spectra for confidently identified peptides. In this approach, stringent data filtering criteria were initially applied to achieve confident peptide identifications with low false discovery rate (e.g., < 1% at peptide level) after LC-MS/MS analysis and database search by SEQUEST. Then, all low scoring MS/MS spectra that match to this set of confidently identified peptides were recovered, leading to more than 20% increase of total identified spectra. The validity of these recovered spectra was assessed by the parent ion mass measurement error distribution, retention time distribution, and by comparing the individual low score and high score spectra that correspond to the same peptides. The results support that the recovered low scoring spectra have similar confidence levels in peptide identifications as the spectra passing the initial stringent filter. The application of this strategy of recovering low scoring spectra significantly improved the spectral count quantification statistics for low abundance proteins, as illustrated in the identification of mouse brain region specific proteins.
PMCID: PMC2974764  PMID: 20812748
Spectral count; LC-MS/MS; false negative; quantification
19.  iPE-MMR: An integrated approach to accurately assign monoisotopic precursor masses to tandem mass spectrometric data 
Analytical chemistry  2010;82(20):8510-8518.
Accurate assignment of monoisotopic precursor masses to tandem mass spectrometric (MS/MS) data is a fundamental and critically important step for successful peptide identifications in mass spectrometry based proteomics. Here we describe an integrated approach that combines three previously reported methods of treating MS/MS data for precursor mass refinement. This combined method, “integrated Post-Experiment Monoisotopic Mass Refinement” (iPE-MMR), integrates steps: 1) generation of refined MS/MS data by DeconMSn; 2) additional refinement of the resultant MS/MS data by a modified version of PE-MMR; 3) elimination of systematic errors of precursor masses using DtaRefinery. iPE-MMR is the first method that utilizes all MS information from multiple MS scans of a precursor ion including multiple charge states, in an MS scan, to determine precursor mass. By combining these methods, iPE-MMR increases sensitivity in peptide identification and provides increased accuracy when applied to complex high-throughput proteomics data.
PMCID: PMC3019303  PMID: 20863060
20.  Two-dimensional liquid chromatography system for online top-down mass spectrometry 
Proteomics  2010;10(20):3610-3620.
An online metal-free weak cation exchange-hydrophilic interaction LC/RPLC system has been developed for sensitive, high-throughput top-down MS. Here, we report results for analyzing PTMs of core histones, with a focus on histone H4, using this system. With just ~24 μg on-column of core histones (H4, H2B, H2A, and H3) purified from human fibroblasts, 41 H4 isoforms were identified, with the type and location of PTMs unambiguously mapped for 20 of these variants. Compared to corresponding offline studies reported previously, the online weak cation exchange-hydrophilic interaction LC/RPLC platform offers significant improvement in sensitivity, with several orders of magnitude reduction in sample requirements and a reduction in the overall analysis time. To the best of our knowledge, this study represents the first online 2-D LC-MS/MS characterization of core histone mixture at the intact protein level.
PMCID: PMC3010896  PMID: 20879039
2-D chromatography; ESI-MS/MS; Histone; PTM; Technology; Top-down
21.  A strategy for degradomic-peptidomic analysis of human blood plasma 
Journal of proteome research  2010;9(5):2339-2346.
Herein we describe a platform for degradomic-peptidomic analyses. The human blood peptidome was isolated through application of AC/SEC, which enriched its components by >300-fold. The isolated peptidome components were separated by the long column HRLC providing a peak capacity of ~300 for species having MWs of up to 20 kDa. The separated species were identified by the FT MS/MS-UStags sequencing method. We identified >200 peptidome peptides that originated from 29 protein substrates from the blood plasma of a single healthy person. The peptidome peptides identified had MWs range of 0.5–14 kDa and identifications were achieved with extremely low (near zero) false discovery rates through searching the IPI human protein database (~70,000 entries). Some of the peptidome peptides identified have mutations and modifications such as acetylation, acetylhexosamine, amidation, cysteinylation, didehydro, oxidation, and pyro-glu. The capabilities described enable the global analysis of the peptidome peptides to identify degradome targets such as degradome proteases, proteases inhibitors, and other relevant substrates, the cleavage specificities for the degradation of individual substrates, as well as a potential basis for using the various extents of substrate degradation for diagnostic purposes.
PMCID: PMC2866148  PMID: 20377236
22.  Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling 
Journal of proteome research  2010;9(5):2160-2169.
We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system.
PMCID: PMC2918385  PMID: 20380418
cell surface proteins; membrane proteome; 18O labeling; membrane-impermeable chemical probe; LC-MS
23.  An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies 
A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking levels present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects and achieve high measurement accuracy, but in turn limits the achievable dynamic range compared to the IMS-TOF instrument.
PMCID: PMC2819092  PMID: 20000344
Ion mobility spectrometry; IMS-MS; LC-IMS-MS; high-throughput RPLC
24.  Mouse-Specific Tandem IgY7-SuperMix Immunoaffinity Separations for Improved LC-MS/MS Coverage of the Plasma Proteome 
Journal of proteome research  2009;8(11):5387-5395.
We report on a mouse specific SuperMix immunoaffinity separation system for separating low abundance proteins from high and moderate abundance proteins in mouse plasma. When applied in tandem with a mouse IgY7 column that removes the seven most abundant proteins in plasma, the SuperMix column captures more than 100 additional moderate abundance proteins, thus allowing significant enrichment of low abundance proteins in the flow-through fraction. A side-by-side comparison of results obtained from 2D-LC-MS/MS analyses of flow-through samples from IgY7 and SuperMix columns revealed a nearly two-fold improvement in the overall proteome coverage. Detection of low abundance proteins was also enhanced, as evidenced by a more than two-fold increase in the coverage of cytokines, growth factors, and other low abundance proteins. Moreover, the tandem separations are automated, reproducible, and allow effective identification of protein abundance differences from LC-MS/MS analyses. Considering the overall reproducibility and increased sensitivity using the IgY7-SuperMix separation system, we anticipate broad applications of this strategy for biomarker discovery using mouse models.
PMCID: PMC2783519  PMID: 19722698
Immunoaffinity separation; LC-MS/MS; Proteomics; Mouse plasma; SuperMix
25.  Plasma Proteome Response to Severe Burn Injury Revealed by 18O-Labeled “Universal” Reference-based Quantitative Proteomics 
Journal of proteome research  2010;9(9):4779-4789.
A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled “universal” reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of ~35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions, as well as potential predictive biomarkers for patient outcomes such as multiple organ failure.
PMCID: PMC2945297  PMID: 20698492
human plasma; quantitative proteomics; 18O labeling; LC-MS; burn; inflammation; “universal” reference

Results 1-25 (58)