Search tips
Search criteria

Results 1-25 (172)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Characterizing the cancer genome in lung adenocarcinoma 
Nature  2007;450(7171):893-898.
Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.
PMCID: PMC2538683  PMID: 17982442
2.  ZEB1 drives epithelial-to-mesenchymal transition in lung cancer 
The Journal of Clinical Investigation  null;126(9):3219-3235.
Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors. Both TGF-β– and MYC-induced EMT required ZEB1, but engaged distinct TGF-β–dependent and vitamin D receptor–dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non–small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-β and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC.
PMCID: PMC5004933  PMID: 27500490
3.  Cancer-specific production of N-acetylaspartate via NAT8L overexpression in non-small cell lung cancer and its potential as a circulating biomarker 
In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA) in cancer cells — undetectable in normal lung epithelium. NAA’s cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA’s cancer-specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N=577), with minimal expression in all non-malignant lung tissues (N=74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA’s clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N=13) in comparison with age-matched healthy controls (N=21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression and its extracellular secretion can be detected in blood.
PMCID: PMC4774047  PMID: 26511490
lung cancer; N-acetylaspartate; NAT8L; blood; biomarker
4.  Molecular Damage in the Bronchial Epithelium of Current and Former Smokers 
Most lung cancers are attributed to smoking. These cancers have been associated with multiple genetic alterations and with the presence of preneoplastic bronchial lesions. In view of such associations, we evaluated the status of specific chromosomal loci in histologically normal and abnormal bronchial biopsy specimens from current and former smokers and specimens from nonsmokers.
Multiple biopsy specimens were obtained from 18 current smokers, 24 former smokers, and 21 nonsmokers. Polymerase chain reaction-based assays involving 15 polymorphic microsatellite DNA markers were used to examine eight chromosomal regions for genetic changes (loss of heterozygosity [LOH] and microsatellite alterations).
LOH and microsatellite alterations were observed in biopsy specimens from both current and former smokers, but no statistically significant differences were observed between the two groups. Among individuals with a history of smoking, 86% demonstrated LOH in one or more biopsy specimens, and 24% showed LOH in all biopsy specimens. About half of the histologically normal specimens from smokers showed LOH, but the frequency of LOH and the severity of histologic change did not correspond until the carcinoma in situ stage. A subset of biopsy specimens from smokers that exhibited either normal or preneoplastic histology showed LOH at multiple chromosomal sites, a phenomenon frequently observed in carcinoma in situ and invasive cancer. LOH on chromosomes 3p and 9p was more frequent than LOH on chromosomes 5q, 17p (17p13; TP53 gene), and 13q (13q14; retinoblastoma gene). Microsatellite alterations were detected in 64% of the smokers. No genetic alterations were detected in nonsmokers.
Genetic changes similar to those found in lung cancers can be detected in the nonmalignant bronchial epithelium of current and former smokers and may persist for many years after smoking cessation.
PMCID: PMC5193483  PMID: 9308707
5.  Unbiased selection of peptide-peptoid hybrids specific for lung cancer compared to normal lung epithelial cells 
ACS chemical biology  2015;10(12):2891-2899.
To develop widely-applicable diagnostic and potentially therapeutic approaches overcoming protein heterogeneity in human cancer, we have developed a technology to unbiasedly select high specificity compound(s) that bind any bio-molecule (e.g., proteins, lipids, carbohydrates) presented on the cancer cell surface but not on normal cells. We utilized a peptidomimetic based on-bead two-color (OBTC) combinatorial cell screen that can detect differences between two cell surfaces at high accuracy by looking for beads (where each bead in the library had one peptide-peptoid hybrid on the surface) that only bound cancer but not normal cells. We screened a library of 393,216 compounds targeting HCC4017 lung adenocarcinoma cells (labeled in red) in the presence of HBEC30KT normal bronchial epithelial cells (labeled in green) derived from the same tissue of the same patient. This screen identified a peptide-peptoid hybrid called PPS1 which displayed high specific binding for HCC4017 cancer cells over HBEC30KT cells. Specificity was validated through: on-bead, ELISA-like and magnetic bead pulldown studies; while a scrambled version of PPS1 did not show any binding. Of interest, the simple dimeric version (PPS1D1) displayed cytotoxic activity on HCC4017 cells, but not on normal HBEC30KT cells. PPS1D1 also strongly accumulated in HCC4017 lung cancer xenografts in mice over control constructs. We conclude that such combinatorial screens using tumor and normal cells from the same patient have significant potential to develop new reagents for cancer biology, diagnosis, and potentially therapy.
PMCID: PMC4774050  PMID: 26509598
6.  Molecular Changes in the Bronchial Epithelium of Patients with Small Cell Lung Cancer 
To better understand the pathways involved in the pathogenesis of small cell lung carcinoma (SCLC), we compared the patterns of molecular changes present in these tumors and their accompanying bronchial epithelium with those present in the other two major types of lung cancer [squamous cell carcinoma (SQC) and adenocarcinoma (ADC)]. We obtained DNA from 68 microdissected invasive lung tumors (22 SCLCs, 21 ADCs, and, 25 SQCs) and 119 noncontiguous foci of histologically normal or hyperplastic epithelia from 10 tumors of each histological type. We determined loss of heterozygosity and microsatellite alterations at 12 chromosomal regions frequently deleted in lung cancers using 19 polymorphic microsatellite markers. Our major findings are as follows: (a) the mean index of allelic loss in SCLC (0.85) and SQC (0.71) tumors was higher than that in ADC (0.39) tumors; (b) although there was considerable overlap, each tumor type had a characteristic pattern of allelic loss; (c) most samples of bronchial epithelium accompanying SCLC (90%) had allelic loss at one or more loci compared with samples accompanying SQC (54%) or ADC (10%); (d) the mean index of allelic loss was much higher in bronchial epithelial samples from SCLC (0.27) than in those from SQC (0.08) or ADC (0.01); and (e) although the mean indices of microsatellite alterations in the tumor types were similar, the bronchial epithelial samples accompanying SCLC had a 10-fold higher mean index (0.063) than those accompanying SQC (0.006) or ADC (0.006). Our findings indicate that extensive genetic damage in the accompanying normal and hyperplastic bronchial epithelium is characteristic of SCLC tumors and suggest major differences in the pathogenesis of the three major lung cancer types.
PMCID: PMC5164924  PMID: 10914700
7.  Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET 
Mutagenesis  2015;30(5):685-694.
The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RASV12 (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy particles present in the deep space environment.
PMCID: PMC4635632  PMID: 26001755
8.  Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis 
Cell reports  2016;16(6):1614-1628.
KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain.
Graphical abstract
PMCID: PMC4981512  PMID: 27477280
9.  Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner 
Oncotarget  2016;7(22):31639-31651.
Telomerase was evaluated as a therapeutic oncotarget by studying the efficacy of the telomerase inhibitor imetelstat in non-small cell lung cancer (NSCLC) cell lines to determine the range of response phenotypes and identify potential biomarkers of response. A panel of 63 NSCLC cell lines was studied for telomere length and imetelstat efficacy in inhibiting colony formation and no correlation was found with patient characteristics, tumor histology, and oncogenotypes. While there was no overall correlation between imetelstat efficacy with initial telomere length (ranging from 1.5 to 20 kb), the quartile of NSCLC lines with the shortest telomeres was more sensitive than the quartile with the longest telomeres. Continuous long-term treatment with imetelstat resulted in sustained telomerase inhibition, progressive telomere shortening and eventual growth inhibition in a telomere-length dependent manner. Cessation of imetelstat therapy before growth inhibition was followed by telomere regrowth. Likewise, in vivo imetelstat treatment caused tumor xenograft growth inhibition in a telomere-length dependent manner. We conclude from these preclinical studies of telomerase as an oncotarget tested by imetelstat response that imetelstat has efficacy across the entire oncogenotype spectrum of NSCLC, continuous therapy is necessary to prevent telomere regrowth, and short telomeres appears to be the best treatment biomarker.
PMCID: PMC5077965  PMID: 27192120
imetelstat; telomerase; telomeres; lung cancer; telomerase inhibition
10.  Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1 
Oncotarget  2016;7(21):30678-30690.
Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents.
PMCID: PMC5058709  PMID: 27120792
phosphatidylserine; peptoids; non-protein biomarkers; anti-cancer agents; lung cancer
11.  LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells 
Oncogene  2015;35(20):2655-2663.
Lung cancer is the leading cause of cancer-related death in the United States and metastatic behavior is largely responsible for this mortality. Mutations in multiple “driver” oncogenes and tumor suppressors are known to contribute to the lung tumorigenesis and in some cases represent therapeutic targets. Leucine Zipper Transcription Factor like 1 (LZTFL1) is located in the chromosome region 3p21.3 where allelic loss and genetic alterations occur early and frequently in lung cancers. Previously, we found that LZTFL1 is down-regulated in epithelial tumors including lung cancer and functions as a tumor suppressor in gastric cancers. However, the functional role of LZTFL1 in lung oncogenesis is undefined. We show here that downregulation of LZTFL1 expression in non-small cell lung cancer is associated with recurrence and poor survival, while re-expression of LZTFL1 in lung tumor cells inhibited extravasation/colonization of circulating tumor cells to the lung and inhibited tumor growth in vivo. Mechanistically, we found that LZTFL1 is expressed in ciliated human bronchial epithelial cells (HBECs) and its expression correlates with HBEC differentiation. LZTFL1 inhibits TGFβ-activated MAPK and hedgehog signaling. Alteration of intracellular levels of LZTFL1 resulted in changes of expression of genes associated with epithelial-to mesenchymal transition (EMT). We conclude that LZTFL1 inhibits lung tumorigenesis, possibly by maintaining epithelial cell differentiation and/or inhibition of signalings that lead to EMT, and suggest that reactivation of LZTFL1 expression in tumor cells may be a novel lung cancer therapeutic approach.
PMCID: PMC4791215  PMID: 26364604
LZTFL1; lung cancer; EMT; SHH; differentiation
13.  Small Cell Lung Cancer: Will Recent Progress Lead to Improved Outcomes? 
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with a unique natural history characterized by a short doubling time, high growth fraction, and early development of widespread metastases. Although a chemotherapy- and radiation-sensitive disease, SCLC typically recurs rapidly after primary treatment, with only 6% of patients surviving five years from diagnosis. This disease has been notable for the absence of major improvements in its treatment: nearly four decades after the introduction of a platinum-etoposide doublet, therapeutic options have remained virtually unchanged, with correspondingly little improvement in survival rates. Here, we summarize specific barriers and challenges inherent to SCLC research and care that have limited progress in novel therapeutic development to date. We discuss recent progress in basic and translational research, especially in the development of mouse models, which will provide insights into the patterns of metastasis and resistance in SCLC. Opportunities in clinical research aimed at exploiting SCLC biology are reviewed, with an emphasis on ongoing trials. SCLC has been described as a recalcitrant cancer, for which there is an urgent need for accelerated progress. The NCI convened a panel of laboratory and clinical investigators interested in SCLC with a goal of defining consensus recommendations to accelerate progress in the treatment of SCLC, which we summarize here.
PMCID: PMC4497796  PMID: 25979931
14.  Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis 
Cancer Informatics  2016;15:81-89.
With increasing use of publicly available gene expression data sets, the quality of the expression data is a critical issue for downstream analysis, gene signature development, and cross-validation of data sets. Thus, identifying reliable expression measurements by leveraging multiple mRNA expression platforms is an important analytical task. In this study, we propose a statistical framework for selecting reliable measurements between platforms by modeling the correlations of mRNA expression levels using a beta-mixture model. The model-based selection provides an effective and objective way to separate good probes from probes with low quality, thereby improving the efficiency and accuracy of the analysis. The proposed method can be used to compare two microarray technologies or microarray and RNA sequencing measurements. We tested the approach in two matched profiling data sets, using microarray gene expression measurements from the same samples profiled on both Affymetrix and Illumina platforms. We also applied the algorithm to mRNA expression data to compare Affymetrix microarray data with RNA sequencing measurements. The algorithm successfully identified probes/genes with reliable measurements. Removing the unreliable measurements resulted in significant improvements for gene signature development and functional annotations.
PMCID: PMC4863871  PMID: 27199546
beta-mixture model; correlation coefficients; cross-validation; gene expression; probe selection; RNA sequence
15.  Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium experience 
Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented.
Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions.
1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET.
Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations.
PMCID: PMC4410843  PMID: 25738220
lung adenocarcinoma; mutation; FISH; genotyping; LCMC
16.  Systematic siRNA Screen Unmasks NSCLC Growth Dependence by Palmitoyltransferase DHHC5 
Molecular cancer research : MCR  2015;13(4):784-794.
Protein S-palmitoylation is a widespread and dynamic post-translational modification that regulates protein-membrane interactions, protein-protein interactions, and protein stability. A large family of palmitoyl acyl transferases, termed the DHHC family due to the presence of a common catalytic motif, catalyzes S-palmitoylation; the role of these enzymes in cancer is largely unexplored. In this study, an RNAi-based screen targeting all 23 members of the DHHC family was conducted to examine the effects on the growth in non-small cell cancer (NSCLC). Interestingly, siRNAs directed against DHHC5 broadly inhibited the growth of multiple NSCLC lines but not normal human bronchial epithelial cell (HBEC) lines. Silencing of DHHC5 by lentivirus-mediated expression of DHHC5 shRNAs dramatically reduced in vitro cell proliferation, colony formation and cell invasion in a subset of cell lines that were examined in further detail. The phenotypes were restored by transfection of a wild-type DHHC5 plasmid but not by a plasmid expressing a catalytically inactive DHHC5. Tumor xenograft formation was severely inhibited by DHHC5 knockdown and rescued by DHHC5 expression, using both a conventional and tetracycline-inducible shRNA. These data indicate that DHHC5 has oncogenic capacity and contributes to tumor formation in NSCLC; thus representing a potential novel therapeutic target.
PMCID: PMC4398612  PMID: 25573953
lung cancer; post-translational lipid modifications; S-palmitoylation; xenografts; drug target
17.  A Systematic Analysis Reveals Heterogeneous Changes in the Endocytic Activities of Cancer Cells 
Cancer research  2015;75(21):4640-4650.
Metastasis is a multistep process requiring cancer cell signaling, invasion, migration, survival, and proliferation. These processes require dynamic modulation of cell surface proteins by endocytosis. Given this functional connection, it has been suggested that endocytosis is dysregulated in cancer. To test this, we developed In-Cell ELISA assays to measure three different endocytic pathways: clathrin-mediated endocytosis, caveolae-mediated endocytosis, and clathrin-independent endocytosis and compared these activities using two different syngeneic models for normal and oncogene-transformed human lung epithelial cells. We found that all endocytic activities were reduced in the transformed versus normal counterparts. However, when we screened 29 independently isolated non–small cell lung cancer (NSCLC) cell lines to determine whether these changes were systematic, we observed significant heterogeneity. Nonetheless, using hierarchical clustering based on their combined endocytic properties, we identified two phenotypically distinct clusters of NSCLCs. One co-clustered with mutations in KRAS, a mesenchymal phenotype, increased invasion through collagen and decreased growth in soft agar, whereas the second was enriched in cells with an epithelial phenotype. Interestingly, the two clusters also differed significantly in clathrin-independent internalization and surface expression of CD44 and CD59. Taken together, our results suggest that endocytotic alterations in cancer cells that affect cell surface expression of critical molecules have a significant influence on cancer-relevant phenotypes, with potential implications for interventions to control cancer by modulating endocytic dynamics.
PMCID: PMC4802864  PMID: 26359453
18.  MiRNA-Related Genetic Variations Associated with Radiotherapy-Induced Toxicities in Patients with Locally Advanced Non–Small Cell Lung Cancer 
PLoS ONE  2016;11(3):e0150467.
Severe radiation-induced toxicities limit treatment efficacy and compromise outcomes of lung cancer. We aimed to identify microRNA-related genetic variations as biomarkers for the prediction of radiotherapy-induced acute toxicities. We genotyped 233 SNPs (161 in microRNA binding site and 72 in processing gene) and analyzed their associations with pneumonitis and esophagitis in 167 stage III NSCLC patients received definitive radiation therapy. Sixteen and 11 SNPs were associated with esophagitis and pneumonitis, respectively. After multiple comparison correction, RPS6KB2:rs10274, SMO:rs1061280, SMO:rs1061285 remained significantly associated with esophagitis, while processing gene DGCR8:rs720014, DGCR8:rs3757, DGCR8:rs1633445 remained significantly associated with pneumonitis. Patients with the AA genotype of RPS6KB2:rs10274 had an 81% reduced risk of developing esophagitis (OR: 0.19, 95% CI: 0.07–0.51, p = 0.001, q = 0.06). Patients with the AG+GG genotype of SMO:rs1061280 had an 81% reduced risk of developing esophagitis (OR: 0.19, 95% CI: 0.07–0.53, p = 0.001, q = 0.06). Patients with the GG+GA genotype of DGCR8:rs720014 had a 3.54-fold increased risk of pneumonitis (OR: 3.54, 95% CI: 1.65–7.61, p <0.05, q <0.1). Significantly cumulative effects of the top SNPs were observed for both toxicities (P-trend <0.001). Using bioinformatics tools, we found that the genotype of rs10274 was associated with altered expression of the RPS6KB2 gene. Gene-based analysis showed DGCR8 (p = 0.010) and GEMIN4 (p = 0.039) were the top genes associated with the risk of developing pneumonitis. Our results provide strong evidence that microRNA-related genetic variations contribute to the development of radiotherapy-induced acute esophagitis and pneumonitis and could thus serve as biomarkers to help accurately predict radiotherapy-induced toxicity in NSCLC patients.
PMCID: PMC4798772  PMID: 26991123
19.  Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines 
PLoS ONE  2016;11(3):e0150963.
It is well established that lung tumors induce the formation of lymphatic vessels. However, the molecular mechanisms controlling tumor lymphangiogenesis in lung cancer have not been fully delineated. In the present study, we identify a panel of non-small cell lung cancer (NSCLC) cell lines that induce lymphangiogenesis and use genome-wide mRNA expression to characterize the molecular mechanisms regulating tumor lymphangiogenesis. We show that Calu-1, H1993, HCC461, HCC827, and H2122 NSCLC cell lines form tumors that induce lymphangiogenesis whereas Calu-3, H1155, H1975, and H2073 NSCLC cell lines form tumors that do not induce lymphangiogenesis. By analyzing genome-wide mRNA expression data, we identify a 17-gene expression signature that distinguishes lymphangiogenic from non-lymphangiogenic NSCLC cell lines. Importantly, VEGF-C is the only lymphatic growth factor in this expression signature and is approximately 50-fold higher in the lymphangiogenic group than in the non-lymphangiogenic group. We show that forced expression of VEGF-C by H1975 cells induces lymphangiogenesis and that knockdown of VEGF-C in H1993 cells inhibits lymphangiogenesis. Additionally, we demonstrate that the triple angiokinase inhibitor, nintedanib (small molecule that blocks all FGFRs, PDGFRs, and VEGFRs), suppresses tumor lymphangiogenesis in H1993 tumors. Together, these data suggest that VEGF-C is the dominant driver of tumor lymphangiogenesis in NSCLC and reveal a specific therapy that could potentially block tumor lymphangiogenesis in NSCLC patients.
PMCID: PMC4780812  PMID: 26950548
20.  Genetic mutation of p53 and suppression of the miR-17~92 cluster are synthetic lethal in non-small cell lung cancer due to upregulation of vitamin D signaling 
Cancer research  2014;75(4):666-675.
Lung cancer is the leading cause of cancer-related fatalities. Recent success developing genotypically-targeted therapies, with potency only in well-defined subpopulations of tumors, suggests a path to improving patient survival. We utilized a library of oligonucleotide inhibitors to microRNAs, a class of post-transcriptional gene regulators, to identify novel synthetic lethal interactions between miRNA inhibition and molecular mechanisms in NSCLC. Two inhibitors, those for miR-92a and miR-1226*, produced a toxicity distribution across a panel of 27 cell lines that correlated with loss of p53 protein expression. Notably, depletion of p53 was sufficient to confer sensitivity to otherwise resistant telomerase-immortalized bronchial epithelial cells. We found that both miR inhibitors cause sequence-specific down-regulation of the miR-17~92 polycistron, and this down-regulation was toxic only in the context of p53 loss. Mechanistic studies indicated the selective toxicity of miR-17~92 polycistron inactivation was the consequence of derepression of vitamin D signaling via suppression of CYP24A1; a rate limiting enzyme in the 1α,25-dihydroxyvitamin D3 metabolic pathway. Of note, high CYP24A1 expression significantly correlated with poor patient outcome in multiple lung cancer cohorts. Our results indicate that the screening approach utilized in this study can identify clinically relevant synthetic lethal interactions, and that vitamin D receptor agonists may show enhanced efficacy in p53-negative lung cancer patients.
PMCID: PMC4333022  PMID: 25519225
21.  Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium 
Cancer  2014;121(3):448-456.
The advent of effective targeted therapy in BRAFV600E mutant lung adenocarcinomas necessitates further exploration of the unique clinical features and behavior of advanced stage BRAF mutant lung adenocarcinomas.
We reviewed data from patients with advanced lung adenocarcinomas enrolled in the Lung Cancer Mutation Consortium whose tumors underwent testing for mutations in EGFR, KRAS, HER2, AKT1, BRAF, MEK1, NRAS, PIK3CA, ALK translocations, and MET amplification.
Twenty-one BRAF mutations were identified in 951 patients with adenocarcinomas (2.2%: 95% CI 1.4 to 3.4%); 17 (81%: 95% CI 60 to 92%) were BRAFV600E and 4 were non-BRAFV600E mutations. Among the 733 cases tested for all 10 genes, BRAF mutations were more likely to occur in current or former smokers than most other genotypic abnormalities (BRAF versus sensitizing EGFR: 82% versus 36%, mid-P<0.001; versus ALK: 39%, mid-P=0.003; versus other mutations: 49%, mid-P=0.02; versus patients with more than one oncogenic driver (doubleton): 46%, mid-P=0.04.) The double mutation rate among patients with BRAF mutations was 16%, compared with 5% in patients with other genomic abnormalities (mid-P=0.045). Differences were not found in survival between patients with BRAF mutations and those with other genomic abnormalities (P>0.20).
We demonstrate BRAF mutations occur in 2.2% of advanced stage lung adenocarcinomas, were most commonly V600E, were associated with distinct clinicopathologic features compared with other genomic subtypes and a high mutation rate in more than one gene, underscoring the importance of comprehensive genomic profiling in assessing patients with advanced lung adenocarcinomas.
PMCID: PMC4305000  PMID: 25273224
BRAF; lung adenocarcinomas; genomic profiling; Lung Cancer Mutation Consortium; clinicopathologic features
22.  Co-occurring genomic alterations define major subsets of KRAS - mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities 
Cancer discovery  2015;5(8):860-877.
The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma (LUAC) are poorly characterized. We performed an integrative analysis of genomic, transcriptomic and proteomic data from early-stage and chemo-refractory LUAC and identified three robust subsets of KRAS-mutant LUAC dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP) and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further reveal biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant LUAC with distinct biology and therapeutic vulnerabilities.
PMCID: PMC4527963  PMID: 26069186
KRAS; co-mutations; lung adenocarcinoma; STK11; HSP90
23.  Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer 
Bioinformatics  2016;32(9):1373-1379.
Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets.
Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel.
Availability and implementation: The clustering algorithm is implemented in Python and is freely available at
Contact: or
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC4848405  PMID: 26755624
24.  Loss of miR-125a expression in a model of K-ras-dependent pulmonary premalignancy 
Understanding the molecular pathogenesis of lung cancer is necessary to identify biomarkers/targets specific to individual airway molecular profiles and to identify options for targeted chemoprevention. Herein, we identify mechanisms by which loss of microRNA (miRNA)-125a-3p (miR-125a) contributes to the malignant potential of human bronchial epithelial cells (HBECs) harboring an activating point mutation of the K-ras proto-oncogene (HBEC K-ras). Among other miRNAs, we identified significant miR-125a loss in HBEC K-ras lines and determined that miR-125a is regulated by the PEA3 transcription factor. PEA3 is upregulated in HBEC K-ras cells, and genetic knockdown of PEA3 restores miR-125a expression. From a panel of inflammatory/angiogenic factors, we identified increased CXCL1 and vascular endothelial growth factor (VEGF) production by HBEC K-ras cells and determined that miR-125a overexpression significantly reduces K-ras-mediated production of these tumorigenic factors. miR-125a overexpression also abrogates increased proliferation of HBEC K-ras cells and suppresses anchorage-independent growth (AIG) of HBEC K-ras/P53 cells, the latter of which is CXCL1-dependent. Finally, pioglitazone increases levels of miR-125a in HBEC K-ras cells via PEA3 downregulation. In addition, pioglitazone and miR-125a overexpression elicit similar phenotypic responses, including suppression of both proliferation and VEGF production. Our findings implicate miR-125a loss in lung carcinogenesis and lay the groundwork for future studies to determine if miR-125a is a possible biomarker for lung carcinogenesis and/or a chemoprevention target. Moreover, our studies illustrate that pharmacologic augmentation of miR-125a in K-ras-mutated pulmonary epithelium effectively abrogates several deleterious downstream events associated with the mutation.
PMCID: PMC4125465  PMID: 24913817
miR-125a; pulmonary premalignancy; molecular markers; PEA3
25.  Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway 
Lung cancer stem cells (CSCs) with elevated aldehyde dehydrogenase (ALDH) activity are self-renewing, clonogenic and tumorigenic. The purpose of our study is to elucidate the mechanisms by which lung CSCs are regulated.
Experimental Design
A genome-wide gene expression analysis was performed to identify genes differentially expressed in the ALDH+ vs. ALDH− cells. RT-PCR, western blot and Aldefluor assay were used to validate identified genes. To explore the function in CSCs we manipulated their expression followed by colony and tumor formation assays.
We identified a subset of genes that were differentially expressed in common in ALDH+ cells, among which ALDH1A3 was the most upregulated gene in ALDH+ vs. ALDH− cells. ShRNA-mediated knockdown of ALDH1A3 in NSCLCs resulted in a dramatic reduction in ALDH activity, clonogenicity and tumorigenicity, indicating that ALDH1A3 is required for tumorigenic properties. By contrast, overexpression of ALDH1A3 by itself it was not sufficient to increase tumorigenicity. The ALDH+ cells also expressed more activated Signal Transducers and Activators of Transcription 3 (STAT3) than ALDH− cells. Inhibition of STAT3 or its activator EZH2 genetically or pharmacologically diminished the level of ALDH+ cells and clonogenicity. Unexpectedly, ALDH1A3 was highly expressed in female, never smokers, well differentiated tumors, or adenocarcinoma. ALDH1A3 low expression was associated with poor overall survival.
Our data show that ALDH1A3 is the predominant ALDH isozyme responsible for ALDH activity and tumorigenicity in most NSCLCs, and that inhibiting either ALDH1A3 or the STAT3 pathway are potential therapeutic strategies to eliminate the ALDH+ subpopulation in NSCLCs.
PMCID: PMC4438754  PMID: 24907115
Lung cancer; cancer stem cells; ALDH1A3; STAT3; Stattic

Results 1-25 (172)