Search tips
Search criteria

Results 1-25 (506)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti-tumour effect 
Cancer Targeting Gene-Viro-Therapy (CTGVT) is a promising cancer therapeutical strategy that strengthens the anti-tumour effect of oncolytic virus by expressing inserted foreign anti-tumour genes. In this work, we constructed a novel adenoviral vector controlled by the tumour-specific survivin promoter on the basis of the ZD55 vector, which is an E1B55KD gene deleted vector we previously constructed. Compared with the original ZD55 vector, this new adenoviral vector (ZD55SP/E1A) showed much better ability of replication and reporter gene expression. We then combined anti-tumour gene interleukine-24 (IL-24) with an RNA polymerase III-dependent U6 promoter driving short hairpin RNA (shRNA) that targets M-phase phosphoprotein 1 (MPHOSPH1, a newly identified oncogene) by inserting the IL-24 and the shRNA of MPHOSPH1 (shMPP1) expression cassettes into the new ZD55SP/E1A vector. Our results demonstrated excellent anti-tumour effect of ZD55SP/E1A-IL-24-shMPP1 in vitro on multiple cancer cell lines such as lung cancer, liver cancer and ovarian caner. At high multiplicity-of-infection (MOI), ZD55SP/E1A-IL-24-shMPP1 triggered post-mitotic apoptosis in cancer cells by inducing prolonged mitotic arrest; while at low MOI, senescence was induced. More importantly, ZD55SP/E1A-IL-24-shMPP1 also showed excellent anti-tumour effects in vivo on SW620 xenograft nude mice. In conclusion, our strategy of constructing an IL-24 and shMPP1 dual gene expressing oncolytic adenoviral vector, which is regulated by the survivin promoter and E1B55KD deletion, could be a promising method of cancer gene therapy.
PMCID: PMC3823082  PMID: 21794078
MPHOSPH1; oncolytic adenoviral vector; mitotic arrest; post-mitotic apoptosis; cancer gene therapy
2.  HCCS1-armed, quadruple-regulated oncolytic adenovirus specific for liver cancer as a cancer targeting gene-viro-therapy strategy 
Molecular Cancer  2011;10:133.
In previously published studies, oncolytic adenovirus-mediated gene therapy has produced good results in targeting cancer cells. However, safety and efficacy, the two most important aspects in cancer therapy, remain serious challenges. The specific expression or deletion of replication related genes in an adenovirus has been frequently utilized to regulate the cancer cell specificity of a virus. Accordingly, in this study, we deleted 24 bp in E1A (bp924-bp947) and the entirety of E1B, including those genes encoding E1B 55kDa and E1B19kDa. We used the survivin promoter (SP) to control E1A in order to construct a new adenovirus vector named Ad.SP.E1A(Δ24).ΔE1B (briefly Ad.SPDD). HCCS1 (hepatocellular carcinoma suppressor 1) is a novel tumor suppressor gene that is able to specifically induce apoptosis in cancer cells. The expression cassette AFP-HCCS1-WPRE-SV40 was inserted into Ad.SPDD to form Ad.SPDD-HCCS1, enabling us to improve the safety and efficacy of oncolytic-mediated gene therapy for liver cancer.
Ad.SPDD showed a decreased viral yield and less toxicity in normal cells but enhanced toxicity in liver cancer cells, compared with the cancer-specific adenovirus ZD55 (E1B55K deletion). Ad.SPDD-HCCS1 exhibited a potent anti-liver-cancer ability and decreased toxicity in vitro. Ad.SPDD-HCCS1 also showed a measurable capacity to inhibit Huh-7 xenograft tumor growth on nude mice. The underlying mechanism of Ad.SPDD-HCCS1-induced liver cancer cell death was found to be via the mitochondrial apoptosis pathway.
These results demonstrate that Ad.SPDD-HCCS1 was able to elicit reduced toxicity and enhanced efficacy both in vitro and in vivo compared to a previously constructed oncolytic adenovirus. Ad.SPDD-HCCS1 could be a promising candidate for liver cancer therapy.
PMCID: PMC3222618  PMID: 22040050
liver cancer; quadruple regulated adenovirus; HCCS1; mitochondrial apoptosis pathway
3.  From lipid second messengers to molecular motors: microtubule-organizing center reorientation in T cells 
Immunological reviews  2013;256(1):95-106.
In T lymphocytes, polarization of the microtubule-organizing center (MTOC) to the immunological synapse enables the directional secretion of cytokines, cytolytic factors, and other soluble molecules toward the antigen-presenting cell. This is likely to be crucial for maintaining the specificity of T-cell effector responses. Here, we review recent advances in our understanding of MTOC reorientation in T cells, focusing first on the importance of diacylglycerol and protein kinase C isozymes and then on the molecular motor proteins that function downstream to drive MTOC movement.
PMCID: PMC4595039  PMID: 24117815
T cells; lipid mediators; protein kinases and phosphatases; T-cell receptors; signaling proteins; signal transduction
4.  Prediction of paraquat exposure and toxicity in clinically ill poisoned patients: a model based approach 
Paraquat poisoning is a medical problem in many parts of Asia and the Pacific. The mortality rate is extremely high as there is no effective treatment. We analyzed data collected during an ongoing cohort study on self-poisoning and from a randomized controlled trial assessing the efficacy of immunosuppressive therapy in hospitalized paraquat-intoxicated patients. The aim of this analysis was to characterize the toxicokinetics and toxicodynamics of paraquat in this population.
A non-linear mixed effects approach was used to perform a toxicokinetic/toxicodynamic population analysis in a cohort of 78 patients.
The paraquat plasma concentrations were best fitted by a two compartment toxicokinetic structural model with first order absorption and first order elimination. Changes in renal function were used for the assessment of paraquat toxicodynamics. The estimates of toxicokinetic parameters for the apparent clearance, the apparent volume of distribution and elimination half-life were 1.17 l h−1, 2.4 l kg−1 and 87 h, respectively. Renal function, namely creatinine clearance, was the most significant covariate to explain between patient variability in paraquat clearance.This model suggested that a reduction in paraquat clearance occurred within 24 to 48 h after poison ingestion, and afterwards the clearance was constant over time. The model estimated that a paraquat concentration of 429 μg l−1 caused 50% of maximum renal toxicity. The immunosuppressive therapy tested during this study was associated with only 8% improvement of renal function.
The developed models may be useful as prognostic tools to predict patient outcome based on patient characteristics on admission and to assess drug effectiveness during antidote drug development.
PMCID: PMC4239979  PMID: 24697850
creatinine clearance; immunosuppressive; kidney function; paraquat; toxicodynamics; toxicokinetics
5.  Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis 
Kidney International  2015;88(3):515-527.
The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases.
PMCID: PMC4558569  PMID: 25970154
cell signaling; fibroblast; fibrosis
6.  Development of photoperiod- and thermo-sensitive male sterility rice expressing transgene Bacillus thuringiensis 
Breeding Science  2015;65(4):333-339.
Stem borers and leaffolders are the main pests that cause severe damage in rice (Oryza sativa L.) production worldwide. We developed the first photoperiod- and thermo-sensitive male sterility (PTSMS) rice 208S with the cry1Ab/1Ac Bacillus thuringiensis (Bt) gene, through sexual crossing with Huahui 1 (elite line with the cry1Ab/1Ac gene). The novel 208S and its hybrids presented high and stable resistance to stem borers and leaffolders, and the content of Cry1Ab/1Ac protein in chlorophyllous tissues achieved the identical level as donor and showed little accumulation in non-chlorophyllous tissue. No dominant dosage effect in the Bt gene was observed in 208S and its derived hybrids. An analysis of fertility transition traits indicated that 208S was completely sterile under long day length/high temperature, but partially fertile under short day length/low temperature. With fine grain quality and favorable combining ability, 208S had no observed negative effects on fertility and agronomic traits from Bt (cry1Ab/1Ac). Additionally, 208S as a male sterile line showed no fertility decrease caused by Bt transgenic process, as it is the case in Huahui 1. Thus, 208S has great application value in two-line hybrid production for insect resistance, and can also be used as a bridge material in rice Bt transgenic breeding.
PMCID: PMC4542934  PMID: 26366116
cry1Ab/1Ac; insect resistance; transgenic breeding; dosage effect; photoperiod- and thermo-sensitive male sterility; two-line hybrid; rice (Oryza sativa L.)
7.  Associations between gene polymorphisms in fatty acid metabolism pathway and preterm delivery in a US urban black population 
Human genetics  2011;131(3):341-351.
There is increasing evidence suggesting that higher intakes of fish or n-3 polyunsaturated fatty acids supplements may decrease the risk of preterm delivery (PTD). We hypothesized that genetic variants of the enzymes critical to fatty acids biosynthesis and metabolism may be associated with PTD. We genotyped 231 potentially functional single nucleotide polymorphisms (SNPs) and tagSNPs in 9 genes (FADS1, FADS2, PTGS1, PTGS2, ALOX5, ALOX5AP, PTGES, PTGES2, and PTGES3) among 1,110 black mothers, including 542 mothers who delivered preterm (<37 weeks gestation) and 568 mothers who delivered full-term babies (≥37 weeks gestation) at Boston Medical Center. After excluding SNPs that are in complete linkage disequilibrium or have lower minor allele frequency (<1%) or call rate (<90%), we examined the association of 206 SNPs with PTD using multiple logistic regression models. We also imputed 190 HapMap SNPs via program MACH and examined their associations with PTD. Finally, we explored gene-level and pathway-level associations with PTD using the adaptive rank truncated product (ARTP) methods. A total of 21 SNPs were associated with PTD (p value ranging from 0.003 to 0.05), including 3 imputed SNPs. Gene-level ARTP statistics indicated that the gene PTGES2 was significantly associated with PTD with a gene-based p value equal to 0.01. No pathway-based association was found. In this large and comprehensive candidate gene study, we found a modest association of genes in fatty acid metabolism pathway with PTD. Further investigation of these gene polymorphisms jointly with fatty acid measures and other genetic factors would help better understand the pathogenesis of PTD.
PMCID: PMC4547931  PMID: 21847588
8.  Maternal Preconception Body Mass Index and Offspring Cord Blood DNA Methylation: Exploration of Early Life Origins of Disease 
Maternal obesity is associated with a variety of common diseases in the offspring. One possible underlying mechanism could be maternal obesity induced alterations in DNA methylation. However, this hypothesis is yet to be tested. We performed epigenomic mapping of cord blood among 308 Black mother-infant pairs delivered at term at the Boston Medical Center using the Illumina HumanMethylation27 BeadChip. Linear regression and pathway analyses were conducted to evaluate the associations between DNA methylation levels and prepregnancy maternal BMI (<25, 25–30, ≥30 kg/m2). The methylation levels of 20 CpG sites were associated with maternal BMI at a significance level of P-value <10−4 in the overall sample, and boys and girls, separately. One CpG site remained statistically significant after correction for multiple comparisons (FDR corrected P-value = 0.04) and was annotated to a potential cancer gene, ZCCHC10. Some of the other CpG site annotated genes appear to be critical to the development of cancers and cardiovascular diseases (i.e., WNT16, C18orf8, ANGPTL2, SAPCD2, ADCY3, PRR16, ERBB2, DOK2, PLAC1). Significant findings from pathway analysis, such as infectious and inflammatory and lipid metabolism pathways, lends support for the potential impact of maternal BMI on the above stated disorders. This study demonstrates that prepregnancy maternal BMI might lead to alterations in offspring DNA methylation in genes relevant to the development of a range of complex chronic diseases, providing evidence of trans-generational influence on disease susceptibility via epigenetic mechanism.
PMCID: PMC4547934  PMID: 24243566
maternal BMI; cord blood; DNA methylation; early life origins of disease
9.  Placental Pathologic Changes of Maternal Vascular Underperfusion in Bronchopulmonary Dysplasia and Pulmonary Hypertension 
Placenta  2014;35(8):570-574.
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of infancy, and BPD-associated pulmonary hypertension (PH) is a serious complication that can negatively impact later childhood health. There is growing evidence that lung injury leading to BPD and PH is due to chronic fetal hypoxia-ischemia. The purpose of this study was to investigate whether placental pathologic changes of maternal vascular underperfusion (MVU) are associated with BPD, and further increased with PH.
We conducted a 5-year retrospective cohort study of premature infants born ≤28 weeks. BPD was defined as persistent oxygen requirement at 36 weeks corrected gestational age. PH was identified using a standardized algorithm of echocardiogram review. Archived placental slides underwent standardized masked histopathologic review. Logistic regression modeling was performed, taking into account important maternal and infant covariates.
Among 283 births, 121 had MVU, of which 67 (55%) developed BPD, and 24 (20%) had PH. Among the common neonatal complications of extreme prematurity, BPD was the only outcome that was increased with MVU (P<0.001). After adjustment for birth weight, fetal growth restriction, preeclampsia and other factors, infants with MVU were more likely to develop BPD (adjusted odds ratio=2.6; 95% confidence interval=1.4, 4.8). Certain MVU sublesions (fibrinoid necrosis/acute atherosis and distal villous hypoplasia/small terminal villi) were increased with PH (P<0.001).
Placental MVU may identify BPD infants who were exposed to intrauterine hypoxia-ischemia, which increases their risk for development of PH disease.
Our findings have important implications for providing earlier and more effective therapies for BPD.
PMCID: PMC4119480  PMID: 24906549
placenta; bronchopulmonary dysplasia; pulmonary hypertension; premature infant; preeclampsia; fetal growth restriction
10.  Do Static and Dynamic Insulin Resistance Indices Perform Similarly in Predicting Pre-diabetes and Type 2 Diabetes? 
We designed a study to compare the predictive power of static and dynamic insulin resistance indices for categorized pre-diabetes (PDM) / type 2 diabetes (DM).
Participants included 1,134 adults aged 18-60 years old with normal glucose at baseline who completed both baseline and 6-years later follow-up surveys. Insulin resistance indices from baseline data were used to predict risk of PDM or DM at follow-up. Two static indices and two dynamic indices were calculated from oral glucose tolerance test results (OGTT) at baseline. Area under the receiver operating characteristic curve (AROC) analysis was used to estimate the predictive ability of candidate indices to predict PDM/DM. A general estimation equation (GEE) model was applied to assess the magnitude of association of each index at baseline with the risk of PDM/DM at follow-up.
The dynamic indices displayed the largest and statistically predictive AROC for PDM/DM diagnosed either by fasting glucose or by postprandial glucose. The bottom quartiles of the dynamic indices were associated with an elevated risk of PDM/DM vs. the top three quartiles. However, the static indices only performed significantly to PDM/DM diagnosed by fasting glucose.
Dynamic insulin resistance indices are stronger predictors of future PDM/DM than static indices. This may be because dynamic indices better reflect the full range of physiologic disturbances in PDM/DM.
PMCID: PMC4138243  PMID: 24882014
insulin resistance indices; predict; pre-diabetes; type 2 diabetes; Chinese; twin; adult
11.  Development of Ophiocordyceps sinensis through Plant-Mediated Interkingdom Host Colonization 
Ophiocordyceps sinensis is a well-known entomogenous and medicinal fungus. After its anamorphs parasitize the larvae of the genus Thitarodes, fruit-bodies may form to be used as medicine. However, its developmental mechanisms remain unknown. The distribution of O. sinensis was determined in different tissues of the Thitarodes larvae and the dominant plant species using real-time quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) technique, respectively. We found that more fungal material was located in plants than in larvae, especially in Ranunculus tanguticus. A considerable amount was detected in larval intestinal-wall and plant roots. It is suggested that plants are the potential hosts of O. sinensis, which modifies our understanding of the life cycle of O. sinensis and indicates that the phytophagous larvae may become infected as they feed. Our research may contribute to the study of systematic evolution and population ecology of O. sinensis, elucidate its developmental mechanism and promote sustainable harvesting.
PMCID: PMC4581204  PMID: 26263972
Ophiocordyceps sinensis; interkingdom colonization; plant; caterpillar; development
12.  Quantitative proteomic analysis of mitochondria from human ovarian cancer cells and their paclitaxel-resistant sublines 
Cancer Science  2015;106(8):1075-1083.
Paclitaxel resistance is a major obstacle for the treatment of ovarian cancer. The chemoresistance mechanisms are partly related to the mitochondria. Identification of the relevant proteins in mitochondria will help in clarifying the possible mechanisms and in selecting effective chemotherapy for patients with paclitaxel resistance. In the present study, mitochondria from two paclitaxel-sensitive human ovarian cancer cell lines (SKOV3 and A2780) and their corresponding resistant cell lines (SKOV3-TR and A2780-TR) were isolated. Guanidine-modified acetyl-stable isotope labeling and liquid chromatography-hybrid linear ion trap Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR MS) were performed to find the expressed differential proteins. Comparative proteomic analysis revealed eight differentially expressed proteins in the ovarian cancer cells and their paclitaxel-resistant sublines. Among them, mimitin and 14-3-3 ζ/δ were selected for further research. The effects of mimitin and 14-3-3 ζ/δ were explored using specific siRNA interference in ovarian cancer cell lines and immunohistochemistry in human tissue specimens. The downregulation of mimitin and 14-3-3 ζ/δ using specific siRNA in paclitaxel-resistant ovarian cancer cells led to an increase in the resistance index to paclitaxel. Multivariate analyses demonstrated that lower expression levels of the mimitin and 14-3-3 ζ/δ proteins were positively associated with shorter progression-free survival (PFS) and overall survival (OS) in patients with primary ovarian cancer (mimitin: PFS: P = 0.041, OS: P = 0.003; 14-3-3 ζ/δ: PFS: P = 0.031, OS: P = 0.011). Mimitin and 14-3-3 protein ζ/δ are potential markers of paclitaxel resistance and prognostic factors in ovarian cancer.
PMCID: PMC4556398  PMID: 26033570
Drug resistance; liquid chromatography-hybrid linear ion trap Fourier-transform ion cyclotron resonance mass spectrometry; mitochondria proteins; ovarian cancer; paclitaxel
13.  In-depth Proteomic mapping of mouse (Mus musculus) epididymal constructive basis for sperm maturation 
Proteome Science  2015;13:20.
The mouse epididymis performs an essential role in sperm maturation, but global protein expression data in mouse epididymis are still lacking. Here, we reported the first in-depth gel-based profiling of mouse epididymis proteome and established a 2-DE map.
A total of 832 protein spots were detected in the reproducible gels, and 625 spots corresponding to 355 unique protein entries have been successfully identified by MALDI-TOF-MS. The confidence of proteome data was validated by Western blot. Functional annotations showed that these proteins were mainly related to general metabolism, antioxidant and structural molecule activity. Immunohistochemistry disclosed two structural proteins (myosin regulatory light polypeptide 9 and alpha-2 type I collagen) continuously expressed in the myoid cell since postpartum.
This study provides a first-draft reference map of the mouse epididymis proteome, which will greatly expand the knowledge of the epididymal structural basis and contribute to the better understanding of those proteins in the process of mouse epididymal sperm maturation.
Electronic supplementary material
The online version of this article (doi:10.1186/s12953-015-0076-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4518611
Sperm maturation; Structural proteins; Mouse epididymis; Bioinformatics; Proteomics
14.  Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study 
The aim of this study is to use amplitude of low-frequency fluctuation (ALFF) as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG) and ALFFs relationship with the behavioral performances.
A total of twenty one patients with PACG (eight males and 13 females), and twenty one healthy subjects (nine males and twelve females) closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL).
Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=−0.487, P=0.033), and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=−0.504, P=0.020).
PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.
PMCID: PMC4524585  PMID: 26251603
angle-closure glaucoma; amplitude of low-frequency fluctuation; functional magnetic resonance imaging; resting state; spontaneous activity; retinal nerve fiber layer
15.  Comparative Analysis of Amino Acids, Nucleosides, and Nucleobases in Thais clavigera from Different Distribution Regions by Using Hydrophilic Interaction Ultra-Performance Liquid Chromatography Coupled with Triple Quadrupole Tandem Mass Spectrometry 
Thais clavigera, as function food, is distributed widely along the coasts of China. To compare and tap its potentially nutritional and functional values, hydrophilic interaction ultra-performance liquid chromatography coupled with triplequadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) was used for simultaneous identification and quantification of amino acids, nucleosides, and nucleobases in the extracts of T. clavigera from 19 sea areas in China, and a PCA was further performed for comparing their content variation in different distribution regions. The total contents of amino acids varied from 116.74 mg/g to 298.58 mg/g being higher than contents of nucleosides and nucleobases that varied from 2.65 mg/g and 20.49 mg/g. Among the habitats, Hainan province had content advantages on others. By PCA, samples collected from different regions were classified into three groups. For specific constituents, lysine accounted for large part of essential amino acids; glycine and taurine also play important roles in the delicate taste and health care function of it. Inosine takes up most of total contents of nucleosides and nucleobases. These results provided good data for establishing quality standard of T. clavigera related products and their further development and utilization.
PMCID: PMC4531205  PMID: 26290666
16.  Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum 
Scientific Reports  2015;5:12500.
The RNA interference (RNAi) plays a critical role in gene regulation in a variety of eukaryotic organisms. However, the role of RNAi remains largely unclear in plant pathogenic fungi. In this study, we explored the roles of core components of the RNAi pathway in Fusarium graminearum, the major causal agent of wheat head blight. Our results demonstrated that the hairpin RNA (hpRNA) can efficiently silence the expression level of target gene, and the argonaute protein FgAgo1 and dicer protein FgDicer2 are important in this silencing process. RNAi machinery was not involved in growth, abiotic stress and pathogenesis in F. graminearum under tested conditions. We firstly applied high-throughput sequencing technology to elucidate small RNA (17–40 nucleotides) (sRNA) transcriptome in F. graminearum, and found that a total of forty-nine micro-like-RNA (milRNA) candidates were identified in the wild-type and ∆FgDICER2, and twenty-four of them were FgDicer2-dependent. Fg-milRNA-4 negatively regulated expression of its target gene. Taken together, our results indicated that the hpRNA-induced gene silencing was a valuable genetic tool for exploring gene function in F. graminearum. FgAgo1 and FgDicer2 proteins played a critical role in the hpRNA mediated gene silencing process. In addition, FgDicer2 was involved in sRNA transcription and milRNA generation in this fungus.
PMCID: PMC4515635  PMID: 26212591
17.  Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice 
BioMed Research International  2015;2015:758616.
The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein-) targeted microparticles of iron oxide (CD81-MPIO) for magnetic resonance imaging (MRI) of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G-) MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS) and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (P < 0.01). Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging.
PMCID: PMC4523685  PMID: 26266263
18.  Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis 
PLoS ONE  2015;10(7):e0133681.
Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis.
PMCID: PMC4507986  PMID: 26193368
19.  Temporal-Spatial Variation of Global GPS-Derived Total Electron Content, 1999–2013 
PLoS ONE  2015;10(7):e0133378.
To investigate the temporal-spatial distribution and evolutions of global Total Electron Content (TEC), we estimate the global TEC data from 1999 to 2013 by processing the GPS data collected by the International Global Navigation Satellite System (GNSS) Service (IGS) stations, and robustly constructed the TEC time series at each of the global 5°×2.5° grids. We found that the spatial distribution of the global TEC has a pattern where the number of TECs diminishes gradually from a low-latitude region to high-latitude region, and anomalies appear in the equatorial crest and Greenland. Temporal variations show that the peak TEC appears in equinoctial months, and this corresponds to the semiannual variation of TEC. Furthermore, the winter anomaly is also observed in the equatorial area of the northern hemisphere and high latitudes of the southern hemisphere. Morlet wavelet analysis is used to determine periods of TEC variations and results indicate that the 1-day, 26.5-day, semi-annual and annual cycles are the major significant periods. The fitting results of a quadratic polynomial show that the effect of solar activity on TEC is stronger in low latitudes than in mid-high latitudes, and stronger in the southern hemisphere than in the northern hemisphere. But the effect in low latitudes in the northern hemisphere is stronger than that in low latitudes in the southern hemisphere. The effect of solar activity on TECs was analyzed with the cross wavelet analysis and the wavelet coherence transformation, and we found that there appears to be a strong coherence in the period of about 27 days. So the sunspot as one index of solar activity seriously affects the TEC variations with the sun’s rotation. We fit the TEC data with the least squares spectral analysis to study the periodic variations of TEC. The changing trend of TEC is generally -0.08 TECu per year from 1999 to 2013. So TECs decrease over most areas year by year, but TECs over the Arctic around Greenland maintained a rising trend during these 15 years.
PMCID: PMC4508092  PMID: 26193101
20.  HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains 
Oncogene  2013;34(3):334-345.
The retroviral oncoprotein Tax from Human T cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T cell leukemia and lymphoma, plays a crucial role in initiating T lymphocyte transformation by inducing oncogenic signaling activation. We here report that Tax is a determining factor for dysregulation of autophagy in HTLV-1-transformed T cells and Tax-immortalized CD4 memory T cells. Tax facilitated autophagic process by activating IκB kinase complex, which subsequently recruited an autophagy molecular complex containing Beclin1 and Bif-1 to the lipid raft microdomains. Tax engaged a crosstalk between IκB kinase complex and autophagic molecule complex by directly interacting with both complexes, promoting assembly of LC3+ autophagosomes. Moreover, expression of lipid raft-targeted Bif-1 or Beclin1 was sufficient to induce formation of LC3+ autophagosomes, suggesting that Tax recruitment of autophagic molecules to lipid rafts is a dominant strategy to deregulate autophagy in the context of HTLV-1 transformation of T cells. Furthermore, depletion of autophagy molecules such as Beclin1 and PI3 kinase class III resulted in impaired growth of HTLV-1-transformed T cells, indicating a critical role of Tax-deregulated autophagy in promoting survival and transformation of virally infected T cells.
PMCID: PMC4067462  PMID: 24362528
HTLV-1 Tax; IKK; autophagy; lipid rafts; Beclin1; Bif-1
21.  Broad protection with an inactivated vaccine against primary-isolated lethal enterovirus 71 infection in newborn mice 
BMC Microbiology  2015;15:139.
Circulating enterovirus 71 (EV-A71)-associated hand, foot, and mouth disease is on the rise in the Asian-Pacific region. Although animal models have been developed using mouse-adapted EV-A71 strains, mouse models using primary EV-A71 isolates are scarce. Lethal animal models with circulating EV-A71 infection would contribute to studies of pathogenesis as well as vaccine development and evaluation.
In this study, we established a lethal mouse model using primary EV-A71 isolates from patients infected with serotypes that are currently circulating in humans. We also characterized the dose-dependent virulence and pathologic changes of circulating EV-A71 in this mouse model. Most importantly, we have established this mouse model as a suitable system for EV-A71 vaccine evaluation. An inactivated EV-A71 vaccine candidate offered complete protection from death induced by various circulating EV-A71 viruses to neonatal mice that were born to immunized female mice. The sera of the immunized dams and their pups showed higher neutralization titers against multiple circulating EV-A71 viruses.
Thus, our newly established animal model using primary EV-A71 isolates is helpful for future studies on viral pathogenesis and vaccine and drug development.
PMCID: PMC4501189  PMID: 26169371
Enterovirus 71; Mouse model; Vaccine candidate
22.  OM2, a Novel Oligomannuronate-Chromium(III) Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway 
PLoS ONE  2015;10(7):e0131930.
In our previous studies, we prepared novel oligomannuronate-chromium(III) complexes (OM2, OM4) from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM), chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes.
Methodology/Principal Findings
We firstly used the pGL3-PGC1α and pGL3-ATGL promoter plasmids to compare their effects on PGC1α and ATGL transcription activities. Then mitochondrial biogenesis was quantified by transmission electron microscopy and MitoTracker staining. Mitochondrial oxygen consumption and fatty acid oxidation were measured by an oxygen biosensor system and ³H-labelled water scintillation. The mitochondrial DNA and mRNA involved in mitochondrial biogenesis and lipid oxidation were evaluated by real-time PCR. AMPK together with other protein expression levels were measured by western blotting. The inhibitor compound C and siRNA of PGC1α were used to inhibit the OM2-induced AMPK-PGC1α signaling pathway. And we found that OM2 stimulated AMPK-PGC1α pathway in the 3T3-L1 adipocytes, which were correlated with induced mitochondrial biogenesis, improved mitochondrial function, and reduced lipid accumulation by enhanced fatty acid β-oxidation and augmented ATGL protein expression.
Our data indicated that the marine oligosaccharide-derived OM2 might represent a novel class of molecules that could be useful for type 2 diabetes prevention and treatment by up-regulating AMPK-PGC1α signaling pathway.
PMCID: PMC4503612  PMID: 26176781
23.  The effect of carvedilol and propranolol on portal hypertension in patients with cirrhosis: a meta-analysis 
Several randomized controlled clinical trials have been conducted to investigate the role of carvedilol and propranolol on the effect of portal pressure in patients with cirrhosis, leading to controversial results. Current meta-analysis was performed to compare the efficacy of the two drugs on portal pressure.
Patients and methods
Two-hundred and ninety eligible patients were recruited. Published studies were selected based on PubMed, the Cochrane Library, Chinese Journal Full-text Database, and Wanfang Database. The outcome measurements included the mean difference (MD) in the percentage of hepatic vein pressure gradient reduction (%HVPG reduction), the risk ratio (RR) of nonresponders in hemodynamic assessment, and the percentage of mean arterial pressure reduction (%MAP reduction). Subgroup analysis was performed.
Seven trials were identified (including five acute and three long-term drug administration randomized controlled trials). A summary of pooled MD between the %HVPG reduction is as follows: overall −8.62 (confidence interval [CI] −11.76, −5.48, P<0.00001), acute −10.05 (CI −14.24, −5.86, P<0.00001), and long term −6.80 (CI −11.53, −2.07, P=0.005), while summary of pooled RR of hemodynamic nonresponders with carvedilol was as follows: overall 0.64 (CI 0.51, 0.81, P=0.0002), acute 0.63 (CI 0.47, 0.85, P=0.002), and long term 0.67 (CI 0.47, 0.97, P=0.03). Both of the outcome measurements favored carvedilol. Significant heterogeneity (P<0.1, I2=92%) existed between the two treatment groups in %MAP reduction. No considerable difference could be observed in the %MAP reduction through the poor overlapping CI boundaries.
Carvedilol has a greater portal hypertensive effect than propranolol. Further comparative trials of the two drugs are required to identify the effect of MAP reduction.
PMCID: PMC4508063  PMID: 26203230
carvedilol; propranolol; portal hypertension; randomized controlled clinical trials; meta-analysis
24.  Unenhanced MR Angiography of the Foot: Initial Experience of Using Flow-Sensitive Dephasing–prepared Steady-State Free Precession in Patients with Diabetes 
Radiology  2014;272(3):885-894.
Unenhanced MR angiography performed with flow-sensitive dephasing–prepared steady-state free precession enables clear depiction of the foot arterial tree and accurate detection of significant arterial stenosis.
To assess image quality and diagnostic performance of unenhanced magnetic resonance (MR) angiography with use of flow-sensitive dephasing (FSD)–prepared steady-state free precession (SSFP) of the foot arteries in patients with diabetes.
Materials and Methods
This prospective study was approved by institutional review board. Informed consent was obtained from all subjects. Thirty-two healthy volunteers and 38 diabetic patients who had been scheduled for lower-extremity contrast material–enhanced MR angiography were recruited to undergo unenhanced MR angiography with a 1.5-T MR unit. Image quality and diagnostic accuracy of unenhanced MR angiography in the detection of significant arterial stenosis (≥50%) were assessed by two independent reviewers. Contrast-enhanced MR angiography was used as the reference standard. The difference in the percentage of diagnostic arterial segments at unenhanced MR angiography between healthy volunteers and diabetic patients was evaluated with the McNemar test and generalized estimating equation for correlated data. Signal-to-noise ratio (SNR) and artery-to-muscle contrast-to-noise ratio (CNR) of pedal arteries were measured and compared between the two MR angiography techniques by using the paired t test.
All subjects successfully underwent unenhanced MR angiography of the foot. Unenhanced MR angiography yielded a high percentage of diagnostic arterial segments in both healthy volunteers (303 of 320 segments, 95%) and patients (341 of 370 segments, 92%), and there was no difference in the percentage between the two populations (P = .195). In patients, the average SNR and CNR at unenhanced MR angiography were higher than those at contrast-enhanced MR angiography (SNR: 90.7 ± 38.1 vs 81.7 ± 34.7, respectively, P = .023; CNR: 85.2 ± 33.2 vs 76.6 ± 33.5, respectively, P = .013). The average sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of unenhanced MR angiography were 88% (35 of 40 segments), 93% (107 of 115 segments), 81% (35 of 43 segments), 96% (107 of 112 segments), and 92% (142 of 155 segments), respectively. Interobserver agreement between the two readers for diagnostic accuracy was good (κ = 0.83).
Unenhanced MR angiography with use of FSD-prepared SSFP allows clear depiction of the foot arterial tree and accurate detection of significant arterial stenosis. The technique has the potential to be a safe and reliable screening tool for the assessment of foot arteries in diabetic patients without the use of gadolinium-based contrast material.
© RSNA, 2014
PMCID: PMC4154940  PMID: 24758556
25.  ABT-263 enhances sorafenib-induced apoptosis associated with Akt activity and the expression of Bax and p21(CIP1/WAF1) in human cancer cells 
British Journal of Pharmacology  2014;171(13):3182-3195.
Sorafenib, a potent inhibitor that targets several kinases associated with tumourigenesis and cell survival, has been approved for clinical treatment as a single agent. However, combining sorafenib with other agents improves its anti-tumour efficacy in various preclinical tumour models. ABT-263, a second-generation BH3 mimic, binds to the anti-apoptotic family members Bcl-2, Bcl-xL and Bcl-w, and has been demonstrated to enhance TNFSF10 (TRAIL)-induced apoptosis in human hepatocarcinoma cells. Hence, we investigated the effects of ABT-263 treatment combined with sorafenib.
The effects of ABT-263 combined with sorafenib were investigated in vitro, on cell viability, clone formation and apoptosis, and the mechanism examined using western blot and flow cytometry. This combination was also evaluated in vivo, in a mouse xenograft model; tumour growth, volume and weights were measured and a TUNEL assay performed.
ABT-263 enhanced sorafenib-induced apoptosis while sparing non-tumourigenic cells. Although ABT-263 plus sorafenib significantly stimulated intracellular reactive oxygen species production and subsequent mitochondrial depolarization, this was not sufficient to trigger cell apoptosis. ABT-263 plus sorafenib significantly decreased Akt activity, which was, at least partly, involved in its effect on apoptosis. Bax and p21 (CIP1/WAF1) were shown to play a critical role in ABT-263 plus sorafenib-induced apoptosis. Combining sorafenib with ABT-263 dramatically increased its efficacy in vivo.
The anti-tumour activity of ABT-263 plus sorafenib may involve the induction of intrinsic cell apoptosis via inhibition of Akt, and reduced Bax and p21 expression. Our findings offer a novel effective therapeutic strategy for tumour treatment.
PMCID: PMC4080973  PMID: 24571452
ABT-263; sorafenib; combination therapy; cancer

Results 1-25 (506)