PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (28)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Combining Chemical Profiling and Network Analysis to Investigate the Pharmacology of Complex Prescriptions in Traditional Chinese Medicine 
Scientific Reports  2017;7:40529.
We present a paradigm, combining chemical profiling, absorbed components detection in plasma and network analysis, for investigating the pharmacology of combination drugs and complex formulae. On the one hand, the composition of the formula is investigated comprehensively via mass spectrometry analysis, followed by pharmacological studies of the fractions as well as the plasma concentration testing for the ingredients. On the other hand, both the candidate target proteins and the effective ingredients of the formula are predicted via analyzing the corresponding networks. The most probable active compounds can then be identified by combining the experimental results with the network analysis. In order to illustrate the performance of the paradigm, we apply it to the Danggui-Jianzhong formula (DJF) from traditional Chinese medicine (TCM) and predict 4 probably active ingredients, 3 of which are verified experimentally to display anti-platelet activity, i.e., (Z)-Ligustilide, Licochalcone A and Pentagalloylglucose. Moreover, the 3-compound formulae composed of these 3 chemicals show better anti-platelet activity than DJF. In addition, the paradigm predicts the association between these 3 compounds and COX-1, and our experimental validation further shows that such association comes from the inhibitory effects of the compounds on the activity of COX-1.
doi:10.1038/srep40529
PMCID: PMC5233960  PMID: 28084407
2.  A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer 
OncoTargets and therapy  2016;9:5713-5720.
Non-small-cell lung cancer (NSCLC) is one of the leading causes of cancer-related death worldwide, and the 5-year survival rate is still low despite advances in diagnosis and therapeutics. A long noncoding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) has been revealed to play important roles in NSCLC carcinogenesis but the detailed mechanisms are still unclear. In the current study, we aimed to investigate the regulation between the lncRNA HOTAIR and p53 in the NSCLC patient samples and cell lines. Our results showed that HOTAIR expression was significantly higher in the cancer tissues than that in the adjacent normal tissue, and was negatively correlated with p53 functionality rather than expression. When p53 was overexpressed in A549 cells, the lncRNA HOTAIR expression was downregulated, and the cell proliferation rate and cell invasion capacity decreased as a consequence. We identified two binding sites of p53 on the promoter region of HOTAIR, where the p53 protein would bind to and suppress the HOTAIR mRNA transcription. Inversely, overexpression of lncRNA HOTAIR inhibited the expression of p53 in A549 cells. Mechanistic studies revealed that HOTAIR modified the promoter of p53 and enhanced histone H3 lysine 27 trimethylation (H3K27me3). These studies identified a specific negative regulation loop of lncRNA HOTAIR and p53 in NSCLC cells, which revealed a new understanding of tumorigenesis in p53 dysfunction NSCLC cells.
doi:10.2147/OTT.S110219
PMCID: PMC5033503  PMID: 27695348
NSCLC; LncRNA HOTAIR; p53; negative loop
3.  The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome 
Experimental Biology and Medicine  2016;241(4):421-425.
Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4+CD25+FOXP3+ regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis.
doi:10.1177/1535370215612138
PMCID: PMC4935412  PMID: 26515143
Soluble fibrinogen-like protein 2; regulatory T cells; atherosclerosis
4.  Quality-Related Monitoring and Grading of Granulated Products by Weibull-Distribution Modeling of Visual Images with Semi-Supervised Learning 
The topic of online product quality inspection (OPQI) with smart visual sensors is attracting increasing interest in both the academic and industrial communities on account of the natural connection between the visual appearance of products with their underlying qualities. Visual images captured from granulated products (GPs), e.g., cereal products, fabric textiles, are comprised of a large number of independent particles or stochastically stacking locally homogeneous fragments, whose analysis and understanding remains challenging. A method of image statistical modeling-based OPQI for GP quality grading and monitoring by a Weibull distribution(WD) model with a semi-supervised learning classifier is presented. WD-model parameters (WD-MPs) of GP images’ spatial structures, obtained with omnidirectional Gaussian derivative filtering (OGDF), which were demonstrated theoretically to obey a specific WD model of integral form, were extracted as the visual features. Then, a co-training-style semi-supervised classifier algorithm, named COSC-Boosting, was exploited for semi-supervised GP quality grading, by integrating two independent classifiers with complementary nature in the face of scarce labeled samples. Effectiveness of the proposed OPQI method was verified and compared in the field of automated rice quality grading with commonly-used methods and showed superior performance, which lays a foundation for the quality control of GP on assembly lines.
doi:10.3390/s16070998
PMCID: PMC4970048  PMID: 27367703
online product quality inspection; image spatial structure; sequential fragmentation theory; image statistical modeling; Weibull distribution; ensemble learning; semi-supervised learning
5.  Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line 
PLoS ONE  2016;11(3):e0146484.
Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel–least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method.
doi:10.1371/journal.pone.0146484
PMCID: PMC4795607  PMID: 26986726
6.  Intraoperative Combined Use of Somatosensory Evoked Potential, Microvascular Doppler Sonography, and Indocyanine Green Angiography in Clipping of Intracranial Aneurysm 
Background
The aim of this study was to evaluate the effect of combining application of somatosensory evoked potential (SEP), microvascular Doppler sonography (MDS), and indocyanine green angiography (ICGA) in intracranial aneurysm clipping surgery.
Material/Methods
A total of 158 patients undergoing an intracranial aneurysm clipping operation were recruited. All patients were evaluated with intraoperative SEP and MDS monitoring, and 28 of them were evaluated with intraoperative combined monitoring of SEP, MDS, and ICGA.
Results
The SEP waves dropped during temporary occlusion of arteries in 19 cases (12.0%), and returned to normal after the clips were repositioned. After aneurysms were clipped, the vortex flow signals were detected by MDS in 6 cases. The aneurysm neck remnants were detected by ICGA in 2 cases of olfactory artery (OA) and in 1 case of middle cerebral artery (MCA), which disappeared after the clips were repositioned. Postoperative CTA or DSA showed that aneurysms were clipped completely and parent arteries and perforating vessels were patent. GOS at 1 month after the surgery was good in 111 cases (70.3%), mild disability in 22 cases (13.9%), severe disability in 14 cases (8.9%), vegetative state in 5 cases (3.2%), and death in 6 cases (3.8%).
Conclusions
Intraoperative combining application of SEP, MDS, and ICGA can reduce brain tissue ischemia and damage and disability and mortality rate after effective clipping of intracranial aneurysms, thereby improving surgical outcomes.
doi:10.12659/MSM.895457
PMCID: PMC4749044  PMID: 26845425
Evoked Potentials, Somatosensory; Indocyanine Green; Intracranial Aneurysm; Monitoring, Intraoperative; Ultrasonography, Doppler
7.  Ulinastatin Protects against Acute Kidney Injury in Infant Piglets Model Undergoing Surgery on Hypothermic Low-Flow Cardiopulmonary Bypass 
PLoS ONE  2015;10(12):e0144516.
Objective
Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF). This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.
Methods
Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6), the control group (Group C, n = 6), and the sham operation group (Group S, n = 6), and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG) from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.
Results
The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation.
Conclusions
HLF cardiopulmonary bypass surgery could intensify systemic inflammatory responses and oxidative stress on infant piglets, thus causing acute kidney injury. Ulinastatin might reduce such inflammatory response and oxidative stress and the extent of kidney injury.
doi:10.1371/journal.pone.0144516
PMCID: PMC4684368  PMID: 26656098
8.  The Activation of Nrf2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells 
Epidemiological studies have verified the critical role that antioxidative stress plays in protecting vascular endothelial cells. The aims of the present study were to investigate the antioxidative activities and differential regulation of nuclear erythroid-related factor 2- (Nrf2-) mediated gene expression by Xueshuan Xinmaining Tablet (XXT), a traditional Chinese medicine with the effect of treating cardiovascular diseases. The antioxidative activities of XXT were investigated using quantitative real-time PCR (qPCR), a PCR array, and western blotting. Our results indicated that XXT exhibited potent antioxidative activities by suppressing the levels of hydrogen peroxide- (H2O2-) induced reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs). We were also conscious of strong Nrf2-mediated antioxidant induction. XXT enhanced the expressions of Keap1, Nrf2, and Nrf2-mediated genes, such as glutamate-cysteine ligase modifier subunit (GCLM), NAD(P)H: quinine oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutathione peroxidase (GPX) in HUVECs. In summary, XXT strongly activated Nrf2 and its downstream regulated genes, which may contribute to the antioxidative and vascular endothelial cell protective activities of XXT.
doi:10.1155/2015/187265
PMCID: PMC4670635  PMID: 26681964
9.  A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance 
Cell reports  2014;8(4):1049-1062.
SUMMARY
Appropriate DNA double-strand break (DSB) repair factor choice is essential for ensuring accurate repair outcome and genomic integrity. The factors that regulate this process remain poorly understood. Here, we identify two repressive chromatin components, the macrohistone variant macroH2A1 and the H3K9 methyltransferase and tumor suppressor PRDM2, which together direct the choice between the antagonistic DSB repair mediators BRCA1 and 53BP1. The macroH2A1/PRDM2 module mediates an unexpected shift from accessible to condensed chromatin that requires the ataxia telangiectasia mutated (ATM)-dependent accumulation of both proteins at DSBs in order to promote DSB-flanking H3K9 dimethylation. Remarkably, loss of macroH2A1 or PRDM2, as well as experimentally induced chromatin decondensation, impairs the retention of BRCA1, but not 53BP1, at DSBs. As a result, mac-roH2A1 and/or PRDM2 depletion causes epistatic defects in DSB end resection, homology-directed repair, and the resistance to poly(ADP-ribose) polymerase (PARP) inhibition—all hallmarks of BRCA1-deficient tumors. Together, these findings identify dynamic, DSB-associated chromatin reorganization as a critical modulator of BRCA1-dependent genome maintenance.
doi:10.1016/j.celrep.2014.07.024
PMCID: PMC4154351  PMID: 25131201
10.  Xueshuan Xinmaining Tablet Treats Blood Stasis through Regulating the Expression of F13a1, Car1, and Tbxa2r 
Xueshuan Xinmaining Tablet (XXT), the Chinese formula, has long been administered in clinical practice for the treatment of cerebral thrombosis and coronary heart disease. In this study, we aimed to study the effect and the molecular mechanism of activating blood circulation and removing blood stasis. Rat models of cold coagulation blood stasis were induced with ice-water bath and epinephrine to assess the amelioration of blood stasis by XXT. Microarray technique was used to identify gene expression from the model and XXT-treated rats. In addition, Quantitative Real-Time PCR (qPCR) was performed to verify the microarray results. The results showed that XXT had a good therapeutic effect on blood stasis by reducing the whole blood viscosity (WBV), plasma viscosity (PV), increasing PT, APTT and TT, and by inhibiting platelet aggregation. Genes were differentially expressed in rats among the model group and the XXT-pretreated groups. XXT ameliorated blood stasis by regulating the expressions of F13a1, Car1, and Tbxa2r.
doi:10.1155/2015/704390
PMCID: PMC4363612  PMID: 25821496
11.  Evidence of the presence of amyloid substance in the blood of familial amyloidotic polyneuropathy patients with ATTR Val30Met mutation 
Transthyretin (TTR) is a major amyloid fibril protein found in patients with familial amyloidotic polynuropathy (FAP) and senile systemic amyloidosis (SSA). Mainly synthesized in the live, TTR is transferred in the form of tetramer bound with thyroxine, retinol-binding protein (RBP) and lipoprotein in the blood. The aim of this study was to demonstrate the presence of amyloid substances in the blood by investigated the hemocoelom amyloid in different tissue sections from autopsies such as brain, kidney, heart and aorta arch tissue. Congo red staining was employed following by application of polarized light examination, to verify the presence of amyloid deposition in the tissues. Immunohistochemical staining was then performed to identify the specific type of amyloid deposition. Matrix-assisted laser desorption-ionization/time of flight mass spectrometry (MALDI-TOF/MS) was also used to analyze TTR mutation in FAP patients. All subjects were FAP ATTR Val30Met patients. In FAP patients, TTR amyloid deposition was found mainly in the tunica intima of the aortic arch. Interestingly, amyloid substance was found in the blood of FAP patient. Our results suggest that amyloid substance was present in the blood of FAP ATTR Val30Met patients.
PMCID: PMC4270544  PMID: 25550818
Amyloid; transthyretin; familial amyloidtic polynuropathy; immunohistochemistry; Congo red staining
12.  A prospective, randomized study on hepatotoxicity of anastrozole compared with tamoxifen in women with breast cancer 
Cancer Science  2014;105(9):1182-1188.
Tamoxifen and anastrozole are widely used as adjuvant treatment for early stage breast cancer, but their hepatotoxicity is not fully defined. We aimed to compare hepatotoxicity of anastrozole with tamoxifen in the adjuvant setting in postmenopausal breast cancer patients. Three hundred and fifty-three Chinese postmenopausal women with hormone receptor-positive early breast cancer were randomized to anastrozole or tamoxifen after optimal primary therapy. The primary end-point was fatty liver disease, defined as a liver–spleen ratio <0.9 as determined using a computed tomography scan. The secondary end-points included abnormal liver function and treatment failure during the 3-year follow up. The cumulative incidence of fatty liver disease after 3 years was lower in the anastrozole arm than that of tamoxifen (14.6% vs 41.1%, P < 0.0001; relative risk, 0.30; 95% CI, 0.21–0.45). However, there was no difference in the cumulative incidence of abnormal liver function (24.6% vs 24.7%, P = 0.61). Interestingly, a higher treatment failure rate was observed in the tamoxifen arm compared with anastrozole and median times to treatment failure were 15.1 months and 37.1 months, respectively (P < 0.0001; HR, 0.27; 95% CI, 0.20–0.37). The most commonly reported adverse events were ‘reproductive system disorders’ in the tamoxifen group (17.1%), and ‘musculoskeletal disorders’ in the anastrozole group (14.6%). Postmenopausal women with hormone receptor-positive breast cancer receiving adjuvant anastrozole displayed less fatty liver disease, suggesting that this drug had a more favorable hepatic safety profile than tamoxifen and may be preferred for patients with potential hepatic dysfunction.
doi:10.1111/cas.12474
PMCID: PMC4462391  PMID: 24975596
Anastrozole; breast cancer; clinical trial; fatty liver disease; hepatotoxicity; tamoxifen
13.  Tetherin has negligible activity in restricting hepatitis C virus in hepatocytes 
Innate immunity  2011;18(3):398-405.
We investigated the ability of tetherin, a recently identified antiviral factor, in restricting hepatitis C virus (HCV) in the Japanese fulminant hepatitis-1 (JFH-1) infectious cell culture system. Human hepatocytes (Huh7, Huh7.5.1) expressed low levels of endogenous tetherin, which could be induced by IFN-α. However, tetherin contributes little to IFN-α-mediated anti-HCV JFH-1 activity. Although tetherin could inhibit Vpu-deleted HIV-1 release, it had negligible activity in restricting HCV JFH-1 release from hepatocytes, which was evidenced by unaffected levels of intracellular/extracellular HCV RNA and infectious virus. The failure of tetherin’s anti-HCV activity could not be related to the counteraction of HCV, as HCV infection of hepatocytes affected neither tetherin expression nor anti-HIV function of tetherin. These observations imply that tetherin has negligible activity in the restriction of HCV JFH-1 in human hepatocytes.
doi:10.1177/1753425911412984
PMCID: PMC3937259  PMID: 21940748
Hepatitis C virus; innate immunity; interferon; tetherin; virus release
14.  Metabolic modulation of chromatin: implications for DNA repair and genomic integrity 
Frontiers in Genetics  2013;4:182.
The maintenance of genomic integrity in response to DNA damage is tightly linked to controlled changes in the damage-proximal chromatin environment. Many of the chromatin modifying enzymes involved in DNA repair depend on metabolic intermediates as cofactors, suggesting that changes in cellular metabolism can have direct consequences for repair efficiency and ultimately, genome stability. Here, we discuss how metabolites may contribute to DNA double-strand break repair, and how alterations in cellular metabolism associated with both aging and tumorigenesis may affect the integrity of our genomes.
doi:10.3389/fgene.2013.00182
PMCID: PMC3779809  PMID: 24065984
chromatin; DNA repair; metabolism; aging; cancer
15.  Mycophenolate Mofetil Inhibits Hepatitis C Virus Replication in Human Hepatic Cells 
Virus research  2012;168(1-2):33-40.
Hepatitis C virus (HCV) infection is the most common indication for liver transplantation and the major cause of graft failure. A widely used immunosuppressant, cyclosporine A (CsA), for people who receive organ transplantation, has been recognized to have the ability to inhibit HCV replication both in vivo and in vitro. In this study, we investigated the effects of several other immunosuppressants, including mycophenolate mofetil (MMF), rapamycin and FK506, on HCV replication in human hepatic cells. MMF treatment of hepatic cells before or during HCV infection significantly suppressed full cycle viral replication, as evidenced by decreased expression of HCV RNA, protein and production of infectious virus. In contrast, rapamycin and FK506 had little effect on HCV replication. Investigation of the mechanism(s) disclosed that the inhibition of HCV replication by MMF was mainly due to its depletion of guanosine, a purine nucleoside crucial for synthesis of guanosine triphosphate, which is required for HCV RNA replication. The supplement of exogenous guanosine could reverse most of anti-HCV effect of mycophenolate mofetil. These data indicate that MMF, through the depletion of guanosine, inhibits full cycle HCV JFH-1 replication in human hepatic cells. It is of interest to further determine whether MMF is indeed beneficial for HCV-infected transplant recipients in future clinical studies.
doi:10.1016/j.virusres.2012.06.009
PMCID: PMC3505383  PMID: 22728816
HCV recurrence; liver transplantation; immunosuppressant; mycophenolate mofetil
16.  (−)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells 
Background
(−)-Epigallocatechin gallate (EGCG) is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS) induces inflammatory cytokine production and impairs blood–brain barrier (BBB) integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs) and BBB permeability.
Methods
The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2) was determined by quantitative real time PCR (qRT-PCR) and ELISA. Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule (VCAM) in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin) and immunofluorescence staining (Claudin 5 and ZO-1). The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER). NF-kB activation was measured by luciferase assay.
Results
EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5) in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG.
Conclusions
Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.
doi:10.1186/1742-2094-9-161
PMCID: PMC3408337  PMID: 22768975
67LR; endothelial; (−)-epigallocatechin gallate; LPS; NF-κB
17.  Protein phosphatase PP6 is required for homology-directed repair of DNA double-strand breaks 
Cell Cycle  2011;10(9):1411-1419.
DNA double-strand breaks (DSBs) are among the most lethal lesions associated with genome stability, which, when destabilized, predisposes organs to cancers. DSBs are primarily fixed either with little fidelity by non-homologous end joining (NHEJ) repair or with high fidelity by homology-directed repair (HDR). The phosphorylated form of H2AX on serine 139 (γ-H2AX) is a marker of DSBs. In this study, we explored if the protein phosphatase PP6 is involved in DSB repair by depletion of its expression in human cancer cell lines, and determined PP6 expression in human breast cancer tissues by immunohistochemistry staining. We found that bacterially produced PP6c (the catalytic subunit of PP6)-containing heterotrimeric combinations exhibit phosphatase activity against γ-H2AX in the in vitro phosphatase assays. Depletion of PP6c or PP6R2 led to persistent high levels of γ-H2AX after DNA damage and a defective HDR. Chromatin immunoprecipitation assays demonstrated that PP6c was recruited to the region adjacent to the DSB sites. Expression of PP6c, PP6R2 and PP6R3 in human breast tumors was significantly lower than those in benign breast diseases. Taken together, our results suggest that γ-H2AX is a physiological substrate of PP6 and PP6 is required for HDR and its expression may harbor a protective role during the development of breast cancer.
doi:10.4161/cc.10.9.15479
PMCID: PMC3117043  PMID: 21451261
protein phosphatase; PP6; γ-H2AX; DNA double-strand break; homology-directed repair
18.  Structural mechanism of the phosphorylation-dependent dimerization of the MDC1 forkhead-associated domain 
Nucleic Acids Research  2012;40(9):3898-3912.
MDC1 is a key mediator of the DNA-damage response in mammals with several phosphorylation-dependent protein interaction domains. The function of its N-terminal forkhead-associated (FHA) domain remains elusive. Here, we show with structural, biochemical and cellular data that the FHA domain mediates phosphorylation-dependent dimerization of MDC1 in response to DNA damage. Crystal structures of the FHA domain reveal a face-to-face dimer with pseudo-dyad symmetry. We found that the FHA domain recognizes phosphothreonine 4 (pT4) at the N-terminus of MDC1 and determined its crystal structure in complex with a pT4 peptide. Biochemical analysis further revealed that in the dimer, the FHA domain binds in trans to pT4 from the other subunit, which greatly stabilizes the otherwise unstable dimer. We show that T4 is phosphorylated primarily by ATM upon DNA damage. MDC1 mutants with the FHA domain deleted or impaired in its ability to dimerize formed fewer foci at DNA-damage sites, but the localization defect was largely rescued by an artificial dimerization module, suggesting that dimerization is the primary function of the MDC1 FHA domain. Our results suggest a novel mechanism for the regulation of MDC1 function through T4 phosphorylation and FHA-mediated dimerization.
doi:10.1093/nar/gkr1296
PMCID: PMC3351156  PMID: 22234877
19.  Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages 
Background
Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS) contributes to neuronal injury. Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures.
Methods
Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS) production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA) oxidation. Cytokine expression was determined by quantitative real-time PCR.
Results
LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and of ROS. In contrast, BBI pretreatment (1-100 μg/ml) of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml), had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml) had no effect on N-methyl-D-aspartic acid (NMDA)-mediated neurotoxicity.
Conclusions
These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.
doi:10.1186/1742-2094-8-15
PMCID: PMC3046894  PMID: 21324129
20.  Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances 
We report here for the first time the synthesis of two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched TiO2 nanotube arrays (BTs) and P25-coated TiO2 nanotube arrays (PCTs) using two-step method including electrochemical anodization and hydrothermal modification process. Then the photocurrent densities versus applied potentials of BTs, PCTs, and pure TiO2 nanotube arrays (TNTAs) were investigated as well. Interestingly, at -0.11 V and under the same illumination condition, the photocurrent densities of BTs and PCTs show more than 1.5 and 1 times higher than that of pure TNTAs, respectively, which can be mainly attributed to significant improvement of the light-absorbing and charge-harvesting efficiency resulting from both larger and rougher surface areas of BTs and PCTs. Furthermore, these dramatic improvements suggest that BTs and PCTs will achieve better photoelectric conversion efficiency and become the promising candidates for applications in DSSCs, sensors, and photocatalysis.
doi:10.1186/1556-276X-6-91
PMCID: PMC3212241  PMID: 21711607
21.  Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor 
Nanoscale Research Letters  2010;5(7):1177-1181.
SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.
doi:10.1007/s11671-010-9622-1
PMCID: PMC2894215  PMID: 20596358
Nanostructure; SnO2; Nanorod array; Biosensor
22.  Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor 
Nanoscale Research Letters  2010;5(7):1177-1181.
SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.
doi:10.1007/s11671-010-9622-1
PMCID: PMC2894215  PMID: 20596358
Nanostructure; SnO2; Nanorod array; Biosensor
23.  Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material 
Nanoscale Research Letters  2010;5(3):649-653.
Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs). The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.
doi:10.1007/s11671-010-9529-x
PMCID: PMC2894033  PMID: 20672094
Carbon-coated SnO2 nanorod array; Hydrothermal method; LIBs; Anode material; Array architecture
24.  Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material 
Nanoscale Research Letters  2010;5(3):649-653.
Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs). The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.
doi:10.1007/s11671-010-9529-x
PMCID: PMC2894033  PMID: 20672094
Carbon-coated SnO2 nanorod array; Hydrothermal method; LIBs; Anode material; Array architecture
25.  A novel and stable "two-hit" acute lung injury model induced by oleic acid in piglets 
Background
Children are susceptible to pulmonary injury, and acute lung injury (ALI) often results in a high mortality and financial cost in pediatric patients. Evidence has showed that oleic acid (OA) plays an important role in ALI. Therefore, it has special significance to study ALI in pediatric patients by using OA-induced animal models. Unfortunately, the animal model hs a high mortality due to hemodynamic instability. The aim of this study was to establish a novel hemodynamically stable OA-induced ALI model in piglets with two hits.
Methods
18 Chinese mini-piglets were randomized into three groups: group C (received saline-ethanol solution), group T (received OA-ethanol solution in routine administration manner) and group H (received OA-ethanol solution in two-hit manner). Hemodynamic and pulmonary function data were measured. Histopathological assessments were performed.
Results
Two piglets in group T died of radical decline of systemic blood pressure. Group T showed more drastic hemodynamic changes than group H especially during the period of 5 to 30 minutes after OA administration. Both Group T and group H all produced severe lung injury, while group C had no significant pathologic changes. OA-induced hypotension might be caused by pulmonary hypertension rather than comprised left ventricular function.
Conclusion
OA leads to severe pulmonary hypertension which results in hemodynamic fluctuation in OA-induced ALI model. It is the first report on hemodynamic stable ALI animal model in piglets using two-hit method. The two-hit ALI animal model fulfils the ALI criteria and has the following characteristics: hemodynamic stability, stable damage to gas exchange and comparability with pediatric patients in body weight and corresponding age. The two-hit ALI animal model can be used to study the basic mechanism and the therapeutic strategies for pediatric ALI.
doi:10.1186/1751-0147-51-17
PMCID: PMC2673213  PMID: 19331663

Results 1-25 (28)