PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Ser-634 and Ser-636 of Kaposi’s Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites 
The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA.
doi:10.3389/fmicb.2012.00060
PMCID: PMC3283893  PMID: 22371709
Kaposi’s sarcoma-associated herpesvirus; replication and transcription activator; phosphorylation; negative elongation factor B; CDK9
2.  Epstein-Barr Virus BALF3 Has Nuclease Activity and Mediates Mature Virion Production during the Lytic Cycle 
Journal of Virology  2014;88(9):4962-4975.
ABSTRACT
Epstein-Barr virus (EBV) lytic replication involves complex processes, including DNA synthesis, DNA cleavage and packaging, and virion egress. These processes require many different lytic gene products, but the mechanisms of their actions remain unclear, especially for DNA cleavage and packaging. According to sequence homology analysis, EBV BALF3, encoded by the third leftward open reading frame of the BamHI-A fragment in the viral genome, is a homologue of herpes simplex virus type 1 UL28. This gene product is believed to possess the properties of a terminase, such as nucleolytic activity on newly synthesized viral DNA and translocation of unit length viral genomes into procapsids. In order to characterize EBV BALF3, the protein was produced by and purified from recombinant baculoviruses and examined in an enzymatic reaction in vitro, which determined that EBV BALF3 acts as an endonuclease and its activity is modulated by Mg2+, Mn2+, and ATP. Moreover, in EBV-positive epithelial cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following induction of the lytic cycle, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Interestingly, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the basis of these results, we suggest that EBV BALF3 is involved simultaneously in DNA synthesis and packaging and is required for the production of mature virions.
IMPORTANCE Virus lytic replication is essential to produce infectious virions, which is responsible for virus survival and spread. This work shows that an uncharacterized gene product of the human herpesvirus Epstein-Barr virus (EBV), BALF3, is expressed during the lytic cycle. In addition, BALF3 mediates an endonucleolytic reaction and is involved in viral DNA synthesis and packaging, leading to influence on the production of mature virions. According to sequence homology and physical properties, the lytic gene product BALF3 is considered a terminase in EBV. These findings identify a novel viral gene with an important role in contributing to a better understanding of the EBV life cycle.
doi:10.1128/JVI.00063-14
PMCID: PMC3993834  PMID: 24554665
3.  Nuclear Translocation and Regulation of Intranuclear Distribution of Cytoplasmic Poly(A)-Binding Protein Are Distinct Processes Mediated by Two Epstein Barr Virus Proteins 
PLoS ONE  2014;9(4):e92593.
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.
doi:10.1371/journal.pone.0092593
PMCID: PMC3976295  PMID: 24705134
4.  Reactive Oxygen Species Mediate Epstein-Barr Virus Reactivation by N-Methyl-N’-Nitro-N-Nitrosoguanidine 
PLoS ONE  2013;8(12):e84919.
N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated recently that N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced glutathione inhibited EBV reactivation under MNNG and H2O2 treatment, suggesting ROS mediate EBV reactivation. The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated, translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive and therapeutic agents for EBV reactivation-associated malignancies.
doi:10.1371/journal.pone.0084919
PMCID: PMC3869928  PMID: 24376853
5.  Identification of Targetable FGFR Gene Fusions in Diverse Cancers 
Cancer discovery  2013;3(6):636-647.
Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2 including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR gene fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Due to the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts which incorporate transcriptome analysis for gene fusions are poised to identify rare, targetable FGFR fusions across diverse cancer types.
doi:10.1158/2159-8290.CD-13-0050
PMCID: PMC3694764  PMID: 23558953
MI-ONCOSEQ; integrative clinical sequencing; FGFR fusions; driver mutations; therapeutic targets
6.  Epstein-Barr Virus BGLF4 Kinase Retards Cellular S-Phase Progression and Induces Chromosomal Abnormality 
PLoS ONE  2012;7(6):e39217.
Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression.
doi:10.1371/journal.pone.0039217
PMCID: PMC3387188  PMID: 22768064
7.  Suppressive Regulation of KSHV RTA with O-GlcNAcylation 
Background
The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored.
Methods
By using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA.
Results
We found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes.
Conclusions
KSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.
doi:10.1186/1423-0127-19-12
PMCID: PMC3395832  PMID: 22300411
KSHV; K-RTA; O-GlcNAcylation; PARP1; Polycomb group (PcG) complex
8.  Histone Demethylase JMJD2A Regulates Kaposi's Sarcoma-Associated Herpesvirus Replication and Is Targeted by a Viral Transcriptional Factor ▿  
Journal of Virology  2011;85(7):3283-3293.
The switch between the latency and lytic cycles of Kaposi's sarcoma-associated herpesvirus (KSHV) is accompanied by specific alterations of histone codes. Recently, comprehensive analysis of histone modifications of KSHV showed the deposition of H3K27me3 across the KSHV genome with two specific regions occupied by the heterochromatin marker H3K9me3. Here, we show that knockdown of JMJD2A, an H3K9me3 demethylase, attenuates viral titers, whereas its overexpression increases KSHV reactivation. JMJD2A is localized in regions of latent viral chromosomes that are deficient in the H3K9me3 mark, indicating that JMJD2A may be responsible for the low level of this mark on viral chromatin. The presence of JMJD2A on the latent genome maintains H3K9 in unmethylated form and signals the readiness of specific sets of viral genes to be reactivated. The demethylase activity of JMJD2A is important for KSHV reactivation, because a demethylase-deficient mutant cannot restore the JMJD2A knockdown phenotype. Interestingly, we found that the KSHV encoded K-bZIP associated with JMJD2A, resulting in the inhibition of demethylase activity of JMJD2A both in vivo and in vitro. Inhibition of JMJD2A by K-bZIP is likely due to a physical interaction which blocks substrate accessibility. A consequence of such an inhibition is increasing global levels of H3K9me3 and gene silencing. Consistently, K-bZIP overexpression resulted in a repression of ∼80% of the ≥2-fold differentially regulated genes compared to results for the uninduced control cells. The consequences of K-bZIP targeting JMJD2A during viral replication will be discussed. To our knowledge, this is the first description of a viral product shown to be a potent inhibitor of a host cellular histone demethylase.
doi:10.1128/JVI.02485-10
PMCID: PMC3067885  PMID: 21228229
9.  Epstein–Barr Virus (EBV) Rta-Mediated EBV and Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivations in 293 Cells 
PLoS ONE  2011;6(3):e17809.
Epstein–Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.
doi:10.1371/journal.pone.0017809
PMCID: PMC3053391  PMID: 21423768
10.  The M Type K15 Protein of Kaposi's Sarcoma-Associated Herpesvirus Regulates MicroRNA Expression via Its SH2-Binding Motif To Induce Cell Migration and Invasion▿  
Journal of Virology  2008;83(2):622-632.
Kaposi's sarcoma (KS) associated herpesvirus (KSHV) is the etiological agent of KS. In vivo, KS is a tumor capable of spreading throughout the body, and pulmonary metastasis is observed clinically. In vitro, KSHV induces the invasiveness of endothelial cells. The KSHV open reading frame K15 is a KSHV-specific gene encoding a transmembrane protein. Two highly divergent forms of K15, the predominant (P) and minor (M) forms (K15P and K15M, respectively), have been identified in different KSHV strains. The two K15 alleles resemble the latent membrane protein 2A (LMP2A) gene of Epstein-Barr virus (EBV) in their genomic locations and protein topology. Also, both K15 proteins have motifs similar to those found in the EBV LMP1 protein. K15 therefore appears to be a hybrid of a distant evolutionary relative of EBV LMP1 and LMP2A. Since both LMP1 and LMP2A proteins are capable of inducing cell motility, we sought to determine whether K15 has similar abilities. In this study, we show that K15M is latently expressed in KSHV-positive PEL cells and knockdown of K15M in PEL cells reduces cell motility. K15M localizes to lysosomal membranes and induces cell migration, invasion, and NF-κB (but not AP-1) activity via its conserved SH2-binding motif. K15M also induces the expression of microRNAs miR-21 and miR-31 via this conserved motif, and knocking down both these microRNAs eliminates K15M-induced cell motility. Therefore, K15M may contribute to KSHV-mediated tumor metastasis and angiogenesis via regulation of miR-21 and miR-31, which we show here for the first time to be a specific regulator of cell migration. In light of these findings, the targeting of K15 or the downstream microRNAs regulated by it may represent novel therapies for treatment of KSHV-associated neoplasia.
doi:10.1128/JVI.00869-08
PMCID: PMC2612383  PMID: 18971265
11.  Epstein-Barr Virus BGLF4 Kinase Induces Disassembly of the Nuclear Lamina To Facilitate Virion Production▿  
Journal of Virology  2008;82(23):11913-11926.
DNA viruses adopt various strategies to modulate the cellular environment for efficient genome replication and virion production. Previously, we demonstrated that the BGLF4 kinase of Epstein-Barr virus (EBV) induces premature chromosome condensation through the activation of condensin and topoisomerase IIα (C. P. Lee, J. Y. Chen, J. T. Wang, K. Kimura, A. Takemoto, C. C. Lu, and M. R. Chen, J. Virol. 81:5166-5180, 2007). In this study, we show that BGLF4 interacts with lamin A/C and phosphorylates lamin A protein in vitro. Using a green fluorescent protein (GFP)-lamin A system, we found that Ser-22, Ser-390, and Ser-392 of lamin A are important for the BGLF4-induced disassembly of the nuclear lamina and the EBV reactivation-mediated redistribution of nuclear lamin. Virion production and protein levels of two EBV primary envelope proteins, BFRF1 and BFLF2, were reduced significantly by the expression of GFP-lamin A(5A), which has five Ser residues replaced by Ala at amino acids 22, 390, 392, 652, and 657 of lamin A. Our data indicate that BGLF4 kinase phosphorylates lamin A/C to promote the reorganization of the nuclear lamina, which then may facilitate the interaction of BFRF1 and BFLF2s and subsequent virion maturation. UL kinases of alpha- and betaherpesviruses also induce the disassembly of the nuclear lamina through similar sites on lamin A/C, suggesting a conserved mechanism for the nuclear egress of herpesviruses.
doi:10.1128/JVI.01100-08
PMCID: PMC2583647  PMID: 18815303
12.  Cell Cycle Regulation by Kaposi's Sarcoma-Associated Herpesvirus K-bZIP: Direct Interaction with Cyclin-CDK2 and Induction of G1 Growth Arrest 
Journal of Virology  2003;77(17):9652-9661.
In order to cope with hostile host environments, many viruses have developed strategies to perturb the cellular machinery to suit their replication needs. Some herpesvirus genes protect cells from undergoing apoptosis to prolong the lives of infected cells, while others, such as Epstein-Barr virus Zta, slow down the G1/S transition phase to allow ample opportunity for transcription and translation of viral genes before the onset of cellular genomic replication. In this study, we investigated whether Kaposi's sarcoma-associated herpesvirus (KSHV) K-bZIP, a homologue of the Epstein-Barr virus transcription factor BZLF1 (Zta), plays a role in cell cycle regulation. Here we show that K-bZIP physically associates with cyclin-CDK2 and downmodulates its kinase activity. The association can be detected in the natural environment of KSHV-infected cells without artificial overexpression of either component. With purified protein, it can be shown that the interaction between K-bZIP and cyclin-CDK2 is direct and that K-bZIP alone is sufficient to inhibit CDK2 activity. The interacting domain of K-bZIP has been mapped to the basic region. The result of these associations is a prolonged G1 phase, accompanied by the induction of p21 and p27 in a naturally infected B-cell line. Thus, in addition to the previously described transcription and genome replication functions, a new role of K-bZIP in KSHV replication is identified in this report.
doi:10.1128/JVI.77.17.9652-9661.2003
PMCID: PMC187423  PMID: 12915577
13.  Kaposi's Sarcoma-Associated Herpesvirus K-bZIP Is a Coregulator of K-Rta: Physical Association and Promoter-Dependent Transcriptional Repression 
Journal of Virology  2003;77(2):1441-1451.
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus that has been implicated in the pathogenesis of Kaposi's sarcoma and B-cell neoplasms. The genomic organization of KSHV is similar to that of Epstein-Barr virus (EBV). EBV encodes two transcriptional factors, Rta and Zta, which functionally interact to transactivate EBV genes during replication and reactivation from latency. KSHV encodes a basic leucine zipper protein (K-bZIP), a homologue of EBV Zta, and K-Rta, the homologue of EBV Rta. EBV Rta and Zta are strong transcriptional transactivators. Although there is ample evidence that K-Rta is a potent transactivator, the role of K-bZIP as a transcriptional factor is much less clear. In this study, we report that K-bZIP modulates K-Rta function. We show that K-bZIP directly interacts with K-Rta in vivo and in vitro. This association is specific, requiring the basic domain (amino acids 122 to 189) of K-bZIP and a specific region (amino acids 499 to 550) of K-Rta, and can be detected with K-bZIP and K-Rta endogenously expressed in BCBL-1 cells treated with tetradecanoyl phorbol acetate. The functional relevance of this association was revealed by the observation that K-bZIP represses the transactivation of the ORF57 promoter by K-Rta in a dose-dependent manner. K-bZIP lacking the interaction domain fails to repress K-Rta-mediated transactivation; this finding attests to the specificity of the repression. Interestingly, this repression is not observed for the promoter of polyadenylated nuclear (PAN) RNA, another target of K-Rta; thus, repression is promoter dependent. Finally, we provide evidence that the modulation of K-Rta by K-bZIP also occurs in vivo during reactivation of the viral genome in BCBL-1 cells. When K-bZIP is overexpressed in BCBL-1 cells, the level of expression of ORF57 but not PAN RNA is repressed. These data support the model that one function of K-bZIP is to modulate the activity of the transcriptional transactivator K-Rta.
doi:10.1128/JVI.77.2.1441-1451.2003
PMCID: PMC140808  PMID: 12502859
14.  Marek's Disease Virus (MDV) Encodes an Interleukin-8 Homolog (vIL-8): Characterization of the vIL-8 Protein and a vIL-8 Deletion Mutant MDV† 
Journal of Virology  2001;75(11):5159-5173.
Chemokines induce chemotaxis, cell migration, and inflammatory responses. We report the identification of an interleukin-8 (IL-8) homolog, termed vIL-8, encoded within the genome of Marek's disease virus (MDV). The 134-amino-acid vIL-8 shares closest homology to mammalian and avian IL-8, molecules representing the prototype CXC chemokine. The gene for vIL-8 consists of three exons which map to the BamHI-L fragment within the repeats flanking the unique long region of the MDV genome. A 0.7-kb transcript encoding vIL-8 was detected in an n-butyrate-treated, MDV-transformed T-lymphoblastoid cell line, MSB-1. This induction is essentially abolished by cycloheximide and herpesvirus DNA polymerase inhibitor phosphonoacetate, indicating that vIL-8 is expressed with true late (γ2) kinetics. Baculovirus-expressed vIL-8 was found to be secreted into the medium and shown to be functional as a chemoattractant for chicken peripheral blood mononuclear cells but not for heterophils. To characterize the function of vIL-8 with respect to MDV infection in vivo, a recombinant MDV was constructed with a deletion of all three exons and a soluble-modified green fluorescent protein (smGFP) expression cassette inserted at the site of deletion. In two in vivo experiments, the vIL-8 deletion mutant (RB1BvIL-8ΔsmGFP) showed a decreased level of lytic infection in comparison to its parent virus, an equal-passage-level parent virus, and to another recombinant MDV containing the insertion of a GFP expression cassette at the nonessential US2 gene. RB1BvIL-8ΔsmGFP retained oncogenicity, albeit at a greatly reduced level. Nonetheless, we have been able to establish a lymphoblastoid cell line from an RB1BvIL-8ΔsmGFP-induced ovarian lymphoma (MDCC-UA20) and verify the presence of a latent MDV genome lacking vIL-8. Taken together, these data describe the identification and characterization of a chemokine homolog encoded within the MDV genome that is dispensable for transformation but may affect the level of MDV in vivo lytic infection.
doi:10.1128/JVI.75.11.5159-5173.2001
PMCID: PMC114921  PMID: 11333897
15.  Kinetics of Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression 
Journal of Virology  1999;73(3):2232-2242.
Herpesvirus gene expression can be classified into four distinct kinetic stages: latent, immediate early, early, and late. Here we characterize the kinetic class of a group of 16 Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 genes in a cultured primary effusion cell line and examine the expression of a subset of these genes in KS biopsies. Expression of two latent genes, LANA and vFLIP, was constitutive and was not induced by chemicals that induce the lytic cycle in primary effusion lymphoma (PEL) cell lines. An immediate-early gene, Rta (open reading frame 50 [ORF50]), was induced within 4 h of the addition of n-butyrate, and its 3.6-kb mRNA was resistant to inhibition by cycloheximide. Early genes, including K3 and K5 that are homologues of the “immediate-early” gene of bovine herpesvirus 4, K8 that is a positional homologue of Epstein-Barr virus BZLF1, vMIP II, vIL-6, and polyadenylated nuclear (PAN) RNA, appeared 8 to 13 h after chemical induction. A second group of early genes that were slightly delayed in their appearance included viral DHFR, thymidylate synthase, vMIP I, G protein-coupled receptor, K12, vBcl2, and a lytic transcript that overlapped LANA. The transcript of sVCA (ORF65), a late gene whose expression was abolished by Phosphonoacetic acid, an inhibitor of KSHV DNA replication, did not appear until 30 h after induction. Single-cell assays indicated that the induction of lytic cycle transcripts resulted from the recruitment of additional cells into the lytic cycle. In situ hybridization of KS biopsies showed that about 3% of spindle-shaped tumor cells expressed Rta, ORF K8, vIL-6, vMIP I, vBcl-2, PAN RNA, and sVCA. Our study shows that several KSHV-encoded homologues of cellular cytokines, chemokines, and antiapoptotic factors are expressed during the viral lytic cycle in PEL cell lines and in KS biopsies. The lytic cycle of KSHV, probably under the initial control of the KSHV/Rta gene, may directly contribute to tumor pathogenesis.
PMCID: PMC104468  PMID: 9971806
16.  Kaposi’s Sarcoma-Associated Herpesvirus Encodes a bZIP Protein with Homology to BZLF1 of Epstein-Barr Virus 
Journal of Virology  1999;73(3):1909-1917.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a recently discovered human gamma herpesvirus strongly implicated in AIDS-related neoplasms. We report here the identification in the KSHV genome of a gene for a protein designated K-bZIP and belonging to the basic-leucine zipper (bZIP) family of transcription factors. K-bZIP shows significant homology to BZLF1, which plays a key role in the replication and reactivation of Epstein-Barr virus. K-bZIP is a homodimerizing protein of 237 amino acids with a prototypic bZIP domain at the C terminus. The N-terminal portion of K-bZIP is derived from the K8 open reading frame which, through in-frame splicing, adjoins the ZIP domain. This structure was revealed by rapid analysis of cDNA ends, followed by cloning of the entire cDNA. A 1.35-kb transcript encoding K-bZIP was detected in BCBL-1 cells treated with 12-O-tetradecanoylphorbol-13-acetate. The synthesis of this transcript was blocked by the protein synthesis inhibitor cycloheximide but not by the viral DNA synthesis inhibitor phosphonoacetate, a result which classifies it as an early lytic gene. RNase protection analysis further mapped the major transcription start site for the 1.35-kb K-bZIP mRNA and identified two other splice variants which encode proteins with the N-terminal portion of K-bZIP but lacking the C-terminal ZIP domain. Full-length K-bZIP forms dimers with itself, and the C terminus encompassing the ZIP domain is required for this process. Our studies set the stage for understanding the role of K-bZIP in the replication and reactivation of the KSHV genome.
PMCID: PMC104432  PMID: 9971770

Results 1-16 (16)