Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Construction of non-covalent single-chain Fv dimers for hepatocellular carcinoma and their biological functions 
World Journal of Hepatology  2010;2(5):185-191.
AIM: To create new diabodies with improved binding activity to antigen of the variable light - variable heavy (VH-VL) oriented single-chain Fv dimers genes (scFv).
METHODS: The linker between VH and VL genes was shortened to 3-5 amino acid residues and cloned into the vector pCANTAB5E. The recombinant plasmids were transformed into TG1 cells and sequenced. The positive transformed cells were infected by M13K07 helper phage to form human recombinant phage antibodies. Expressed products were identified by SDS-PAGE, Western blotting, size exclusion gel chromatography (SEC), ELISA and immunohistochemistry.
RESULTS: Three scFv (scFv-3, scFv-4, scFv-5) were constructed successfully with binding ability to hepatocellular carcinoma 3.5-6 fold greater than their parental scFv. The single-chain Fv dimer (scFv-5, termed BDM3) with the best binding ability was successfully expressed in Yeast pichlia, as shown by. SDS-PAGE and Western blotting. SEC results suggested the molecular weight of the expressed products was about 61 kDa. Expressed products showed significantly stronger binding to hepatocellular carcinoma cells than scFv, still having 50% binding activity even after 16 h incubation as 37°C. The purified dimers were bound specifically to the tumor antigen of HCC.
CONCLUSION: we have generated scFv dimers by shortening a series of linkers to 3-5 amino acid residues in VH-linker-VL orientation, resulting in highly stable and affinity-improved dimeric molecules. These will become an attractive targeting moiety in immunotherapeutic and diagnostic applications for HCC.
PMCID: PMC2998965  PMID: 21160994
Diabody; Antibody-targeted; Specificity; Affinity; Stability
2.  HGF and Direct Mesenchymal Stem Cells Contact Synergize to Inhibit Hepatic Stellate Cells Activation through TLR4/NF-kB Pathway 
PLoS ONE  2012;7(8):e43408.
Bone marrow-derived mesenchymal stem cells (BMSCs) can reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs.
We used BMSCs directly and indirectly co-culture system with HSCs to evaluate the anti-fibrosis effect of BMSCs. Cell proliferation and activation were examined in the presence of BMSCs and HGF. c-met was knockdown in HSCs to evaluate the effect of HGF secreted by BMSCs. The TLR4 and Myeloid differentiation primary response gene 88(MyD88) mRNA levels and the NF-kB pathway activation were determined by real-time PCR and western blotting analyses. The effect of BMSCs on HSCs activation was investigated in vitro in either MyD88 silencing or overexpression in HSCs. Liver fibrosis in rats fed CCl4 with and without BMSCs supplementation was compared. Histopathological examinations and serum biochemical tests were compared between the two groups.
BMSCs remarkably inhibited the proliferation and activation of HSCs by interfering with LPS-TLR4 pathway through a cell–cell contact mode that was partially mediated by HGF secretion. The NF-kB pathway is involved in HSCs activation inhibition by BMSCs. MyD88 over expression reduced the BMSC inhibition of NF-kB luciferase activation. BMSCs protected liver fibrosis in vivo.
BMSCs modulate HSCs in vitro via TLR4/MyD88/NF-kB signaling pathway through cell–cell contact and secreting HGF. BMSCs have therapeutic effects on cirrhosis rats. Our results provide new insights into the treatment of hepatic fibrosis with BMSCs.
PMCID: PMC3426540  PMID: 22927965

Results 1-2 (2)