PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Autophagy in the Human Placenta throughout Gestation 
PLoS ONE  2013;8(12):e83475.
Background
Autophagy has been reported to be essential for pre-implantation development and embryo survival. However, its role in placental development and regulation of autophagy during pregnancy remain unclear. The aims of this study were to (1) study autophagy by characterizing changes in levels of beclin-1, DRAM, and LC3B in human placenta throughout gestation; (2) determine whether autophagy is involved in regulation of trophoblast invasion in JEG-3 cells (a choriocarcinoma cell line); (3) examine the effects of reduced oxygen and glucose on the autophagic changes; and (4) investigate the effect of reoxygenation and supplementation of glucose after oxygen-glucose deprivation (OGD) on the autophagic changes in primary cytotrophoblasts obtained from normal term pregnancy.
Methodology/Principal Findings
An analysis of 40 placental samples representing different gestational stages showed (1) no significant differences in beclin-1, DRAM, and LC3B-II levels in placentas between early and mid-gestation, and late gestation with vaginal delivery; (2) placentas from late gestation with cesarean section had lower levels of LC3B-II compared to early and mid-gestation, and late gestation with vaginal delivery; levels of DRAM were also lower compared to placentas from early and mid-gestation; and (3) using explant cultures, villous tissues from early and late gestation had similar rates of autophagic flux under physiological oxygen concentrations. Knockdown of BECN1, DRAM, and LC3B had no effects on viability and invasion activity of JEG-3 cells. On the other hand, OGD caused a significant increase in the levels of LC3B-II in primary cytotrophoblasts, while re-supplementation of oxygen and glucose reduced these changes. Furthermore, there were differential changes in levels of beclin-1, DRAM, and LC3B-II in response to changes in oxygen and glucose levels.
Conclusions/Significance
Our results indicate that autophagy is involved in development of the human placenta and that changes in oxygen and glucose levels participate in regulation of autophagic changes in cytotrophoblast cells.
doi:10.1371/journal.pone.0083475
PMCID: PMC3862763  PMID: 24349516
2.  Preventing Flow-Metabolism Uncoupling Acutely Reduces Axonal Injury after Traumatic Brain Injury 
Journal of Neurotrauma  2012;29(7):1469-1482.
Abstract
We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. Local cerebral metabolic rate for glucose (LCMRglc) and LCBF measurements were obtained 3 h post-trauma in the same rat via 18F-fluorodeoxyglucose and 14C-iodoantipyrine co-registered autoradiographic images, and compared to the density of damaged axonal profiles in adjacent sections, and in additional groups at 24 h used to assess different populations of injured axons stereologically. ACZ treatment significantly and globally elevated LCBF twofold above untreated-injured rats at 3 h (p<0.05), but did not significantly affect LCMRglc. As a result, ipsilateral LCMRglc:LCBF ratios were reduced by twofold to sham-control levels, and the density of β-APP-stained axons at 24 h was significantly reduced in most brain regions compared to the untreated-injured group (p<0.01). Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3–24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons.
doi:10.1089/neu.2011.2161
PMCID: PMC3335110  PMID: 22321027
autoradiography; blood flow; cortical contusion injury; glucose metabolism; uncoupling
3.  Salidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury 
PLoS ONE  2012;7(9):e45763.
Background
Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway.
Methodology/Principal Findings
Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro.
Conclusions/Significance
Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis following TBI, at least partially via the PI3K/Akt signaling pathway.
doi:10.1371/journal.pone.0045763
PMCID: PMC3454376  PMID: 23029230
4.  Differential Effects of Concomitant Use of Vitamins C and E on Trophoblast Apoptosis and Autophagy between Normoxia and Hypoxia-Reoxygenation 
PLoS ONE  2010;5(8):e12202.
Background
Concomitant supplementation of vitamins C and E during pregnancy has been reportedly associated with low birth weight, the premature rupture of membranes and fetal loss or perinatal death in women at risk for preeclampsia; however, the cause is unknown. We surmise that hypoxia-reoxygenation (HR) within the intervillous space due to abnormal placentation is the mechanism and hypothesize that concomitant administration of aforementioned vitamin antioxidants detrimentally affects trophoblast cells during HR.
Methodology/Principal Findings
Using villous explants, concomitant administration of 50 µM of vitamins C and E was observed to reduce apoptotic and autophagic changes in the trophoblast layer at normoxia (8% oxygen) but to cause more prominent apoptosis and autophagy during HR. Furthermore, increased levels of Bcl-2 and Bcl-xL in association with a decrease in the autophagy-related protein LC3-II were noted in cytotrophoblastic cells treated with vitamins C and E under standard culture conditions. In contrast, vitamin treatment decreased Bcl-2 and Bcl-xL as well as increased mitochondrial Bak and cytosolic LC3-II in cytotrophoblasts subjected to HR.
Conclusions/Significance
Our results indicate that concomitant administration of vitamins C and E has differential effects on the changes of apoptosis, autophagy and the expression of Bcl-2 family of proteins in the trophoblasts between normoxia and HR. These changes may probably lead to the impairment of placental function and suboptimal growth of the fetus.
doi:10.1371/journal.pone.0012202
PMCID: PMC2922378  PMID: 20808946
5.  Increased Autophagy in Placentas of Intrauterine Growth-Restricted Pregnancies 
PLoS ONE  2012;7(7):e40957.
Background
Unexplained intrauterine growth restriction (IUGR) may be a consequence of placental insufficiency; however, its etiology is not fully understood. We surmised that defective placentation in IUGR dysregulates cellular bioenergic homeostasis, leading to increased autophagy in the villous trophoblast. The aims of this work were (1) to compare the differences in autophagy, p53 expression, and apoptosis between placentas of women with normal or IUGR pregnancies; (2) to study the effects of hypoxia and the role of p53 in regulating trophoblast autophagy; and (3) to investigate the relationship between autophagy and apoptosis in hypoxic trophoblasts.
Methodology/Principal Findings
Compared with normal pregnant women, women with IUGR had higher placental levels of autophagy-related proteins LC3B-II, beclin-1, and damage-regulated autophagy modulator (DRAM), with increased p53 and caspase-cleaved cytokeratin 18 (M30). Furthermore, cytotrophoblasts cultured under hypoxia (2% oxygen) in the presence or absence of nutlin-3 (a p53 activity stimulator) had higher levels of LC3B-II, DRAM, and M30 proteins and increased Bax mRNA expression compared with controls cultured under standard conditions. In contrast, administration of pifithrin-α (a p53 activity inhibitor) during hypoxia resulted in protein levels that were similar to those of the control groups. Moreover, cytotrophoblasts transfected with LC3B, beclin-1, or DRAM siRNA had higher levels of M30 compared with the controls under hypoxia. However, transfection with Bcl-2 or Bax siRNA did not cause any significant change in the levels of LC3B-II in hypoxic cytotrophoblasts.
Conclusions/Significance
Together, these results suggest that there is a crosstalk between autophagy and apoptosis in IUGR and that p53 plays a pivotal and complex role in regulating trophoblast cell turnover in response to hypoxic stress.
doi:10.1371/journal.pone.0040957
PMCID: PMC3397998  PMID: 22815878
6.  Wogonin Improves Histological and Functional Outcomes, and Reduces Activation of TLR4/NF-κB Signaling after Experimental Traumatic Brain Injury 
PLoS ONE  2012;7(1):e30294.
Background
Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-κB)-related signaling pathways in mice following TBI.
Methodology/Principal Findings
Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg−1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg−1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2.
Conclusions/Significance
Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.
doi:10.1371/journal.pone.0030294
PMCID: PMC3260265  PMID: 22272328

Results 1-6 (6)