PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Identification of seven loci affecting mean telomere length and their association with disease 
Codd, Veryan | Nelson, Christopher P. | Albrecht, Eva | Mangino, Massimo | Deelen, Joris | Buxton, Jessica L. | Jan Hottenga, Jouke | Fischer, Krista | Esko, Tõnu | Surakka, Ida | Broer, Linda | Nyholt, Dale R. | Mateo Leach, Irene | Salo, Perttu | Hägg, Sara | Matthews, Mary K. | Palmen, Jutta | Norata, Giuseppe D. | O’Reilly, Paul F. | Saleheen, Danish | Amin, Najaf | Balmforth, Anthony J. | Beekman, Marian | de Boer, Rudolf A. | Böhringer, Stefan | Braund, Peter S. | Burton, Paul R. | de Craen, Anton J. M. | Denniff, Matthew | Dong, Yanbin | Douroudis, Konstantinos | Dubinina, Elena | Eriksson, Johan G. | Garlaschelli, Katia | Guo, Dehuang | Hartikainen, Anna-Liisa | Henders, Anjali K. | Houwing-Duistermaat, Jeanine J. | Kananen, Laura | Karssen, Lennart C. | Kettunen, Johannes | Klopp, Norman | Lagou, Vasiliki | van Leeuwen, Elisabeth M. | Madden, Pamela A. | Mägi, Reedik | Magnusson, Patrik K.E. | Männistö, Satu | McCarthy, Mark I. | Medland, Sarah E. | Mihailov, Evelin | Montgomery, Grant W. | Oostra, Ben A. | Palotie, Aarno | Peters, Annette | Pollard, Helen | Pouta, Anneli | Prokopenko, Inga | Ripatti, Samuli | Salomaa, Veikko | Suchiman, H. Eka D. | Valdes, Ana M. | Verweij, Niek | Viñuela, Ana | Wang, Xiaoling | Wichmann, H.-Erich | Widen, Elisabeth | Willemsen, Gonneke | Wright, Margaret J. | Xia, Kai | Xiao, Xiangjun | van Veldhuisen, Dirk J. | Catapano, Alberico L. | Tobin, Martin D. | Hall, Alistair S. | Blakemore, Alexandra I.F. | van Gilst, Wiek H. | Zhu, Haidong | Erdmann, Jeanette | Reilly, Muredach P. | Kathiresan, Sekar | Schunkert, Heribert | Talmud, Philippa J. | Pedersen, Nancy L. | Perola, Markus | Ouwehand, Willem | Kaprio, Jaakko | Martin, Nicholas G. | van Duijn, Cornelia M. | Hovatta, Iiris | Gieger, Christian | Metspalu, Andres | Boomsma, Dorret I. | Jarvelin, Marjo-Riitta | Slagboom, P. Eline | Thompson, John R. | Spector, Tim D. | van der Harst, Pim | Samani, Nilesh J.
Nature genetics  2013;45(4):422-427e2.
Inter-individual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. Here, in a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in a further 10,739 individuals, we identified seven loci, including five novel loci, associated with mean LTL (P<5x10−8). Five of the loci contain genes (TERC, TERT, NAF1, OBFC1, RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all seven loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of CAD (21% (95% CI: 5–35%) per standard deviation in LTL, p=0.014). Our findings support a causal role of telomere length variation in some age-related diseases.
doi:10.1038/ng.2528
PMCID: PMC4006270  PMID: 23535734
2.  Meta analysis of candidate gene variants outside the LPA locus with Lp(a) plasma levels in 14,500 participants of six White European cohorts 
Atherosclerosis  2011;217(2):447-451.
Background
Both genome-wide association studies and candidate gene studies have reported that the major determinant of plasma levels of the Lipoprotein (a) [Lp(a)] reside within the LPA locus on chromosome 6. We have used data from the Human CVD bead chip to explore the contribution of other candidate genes determining Lp(a) levels.
Methods
48,032 single nucleotide polymorphisms (SNPs) from the Illumina Human CVD bead chip were genotyped in 5,059 participants of the Whitehall II study (WHII) of randomly ascertained healthy men and women. SNPs showing association with Lp(a) levels of p< 10−4 outside the LPA locus were selected for replication in a total of an additional 9,463 participants of five European based studies (EAS, EPIC-Norfolk, NPHSII, PROCARDIS, and SAPHIR)
Results
In Whitehall II, apart from the LPA locus (where p values for several SNPs were < 10−30) there was significant association at four loci GALNT2, FABP1, PPARGC1A and TNFRSFF11A. However, a meta-analysis of the six studies did not confirm any of these findings.
Conclusion
Results from this meta analysis of 14,522 participants revealed no candidate genes from the Human CVD bead chip outside the LPA locus to have an effect on Lp(a) levels. Further studies with genome-wide and denser SNP coverage are required to confirm or refute this finding.
doi:10.1016/j.atherosclerosis.2011.04.015
PMCID: PMC3972487  PMID: 21592478
Lipoprotein(a); LPA; Illumina Human CVD bead chip; genetic association
3.  Influence of common genetic variation on blood lipid levels, cardiovascular risk, and coronary events in two British prospective cohort studies 
European Heart Journal  2012;34(13):972-981.
Aims
The aim of this study was to quantify the collective effect of common lipid-associated single nucleotide polymorphisms (SNPs) on blood lipid levels, cardiovascular risk, use of lipid-lowering medication, and risk of coronary heart disease (CHD) events.
Methods and results
Analysis was performed in two prospective cohorts: Whitehall II (WHII; N = 5059) and the British Women’s Heart and Health Study (BWHHS; N = 3414). For each participant, scores were calculated based on the cumulative effect of multiple genetic variants influencing total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Compared with the bottom quintile, individuals in the top quintile of the LDL-C genetic score distribution had higher LDL-C {mean difference of 0.85 [95% confidence interval, (CI) = 0.76–0.94] and 0.63 [95% CI = 0.50–0.76] mmol/l in WHII and BWHHS, respectively}. They also tended to have greater odds of having ‘high-risk’ status (Framingham 10-year cardiovascular disease risk >20%) [WHII: odds ratio (OR) = 1.36 (0.93–1.98), BWHHS: OR = 1.49 (1.14–1.94)]; receiving lipid-lowering treatment [WHII: OR = 2.38 (1.57–3.59), BWHHS: OR = 2.24 (1.52–3.29)]; and CHD events [WHII: OR = 1.43 (1.02–2.00), BWHHS: OR = 1.31 (0.99–1.72)]. Similar associations were observed for the TC score in both studies. The TG score was associated with high-risk status and medication use in both studies. Neither HDL nor TG scores were associated with the risk of coronary events. The genetic scores did not improve discrimination over the Framingham risk score.
Conclusion
At the population level, common SNPs associated with LDL-C and TC contribute to blood lipid variation, cardiovascular risk, use of lipid-lowering medications and coronary events. However, their effects are too small to discriminate future lipid-lowering medication requirements or coronary events.
doi:10.1093/eurheartj/ehs243
PMCID: PMC3612774  PMID: 22977227
Lipid genetic score; Lipid medication; Framingham
4.  Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14 015 stroke cases and pooled analysis of primary biomarker data from up to 60 883 individuals 
Background At the APOE gene, encoding apolipoprotein E, genotypes of the ε2/ε3/ε4 alleles associated with higher LDL-cholesterol (LDL-C) levels are also associated with higher coronary risk. However, the association of APOE genotype with other cardiovascular biomarkers and risk of ischaemic stroke is less clear. We evaluated the association of APOE genotype with risk of ischaemic stroke and assessed whether the observed effect was consistent with the effects of APOE genotype on LDL-C or other lipids and biomarkers of cardiovascular risk.
Methods We conducted a systematic review of published and unpublished studies reporting on APOE genotype and ischaemic stroke. We pooled 41 studies (with a total of 9027 cases and 61 730 controls) using a Bayesian meta-analysis to calculate the odds ratios (ORs) for ischaemic stroke with APOE genotype. To better evaluate potential mechanisms for any observed effect, we also conducted a pooled analysis of primary data using 16 studies (up to 60 883 individuals) of European ancestry. We evaluated the association of APOE genotype with lipids, other circulating biomarkers of cardiovascular risk and carotid intima-media thickness (C-IMT).
Results The ORs for association of APOE genotypes with ischaemic stroke were: 1.09 (95% credible intervals (CrI): 0.84–1.43) for ε2/ε2; 0.85 (95% CrI: 0.78–0.92) for ε2/ε3; 1.05 (95% CrI: 0.89–1.24) for ε2/ε4; 1.05 (95% CrI: 0.99–1.12) for ε3/ε4; and 1.12 (95% CrI: 0.94–1.33) for ε4/ε4 using the ε3/ε3 genotype as the reference group. A regression analysis that investigated the effect of LDL-C (using APOE as the instrument) on ischaemic stroke showed a positive dose-response association with an OR of 1.33 (95% CrI: 1.17, 1.52) per 1 mmol/l increase in LDL-C. In the separate pooled analysis, APOE genotype was linearly and positively associated with levels of LDL-C (P-trend: 2 × 10−152), apolipoprotein B (P-trend: 8.7 × 10−06) and C-IMT (P-trend: 0.001), and negatively and linearly associated with apolipoprotein E (P-trend: 6 × 10−26) and HDL-C (P-trend: 1.6 × 10−12). Associations with lipoprotein(a), C-reactive protein and triglycerides were non-linear.
Conclusions In people of European ancestry, APOE genotype showed a positive dose-response association with LDL-C, C-IMT and ischaemic stroke. However, the association of APOE ε2/ε2 genotype with ischaemic stroke requires further investigation. This cross-domain concordance supports a causal role of LDL-C on ischaemic stroke.
doi:10.1093/ije/dyt034
PMCID: PMC3619955  PMID: 23569189
Stroke; lipids; apolipoprotein E; cardiovascular disease; systematic review; meta-analysis; biomarkers
5.  From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. 
F1000Research  2014;2:242.
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. 
 
We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. 
 
This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
doi:10.12688/f1000research.2-242.v2
PMCID: PMC3931453  PMID: 24627794
6.  Association of TERC and OBFC1 Haplotypes with Mean Leukocyte Telomere Length and Risk for Coronary Heart Disease  
PLoS ONE  2013;8(12):e83122.
Objective
To replicate the associations of leukocyte telomere length (LTL) with variants at four loci and to investigate their associations with coronary heart disease (CHD) and type II diabetes (T2D), in order to examine possible causal effects of telomere maintenance machinery on disease aetiology.
Methods
Four SNPs at three loci BICD1 (rs2630578 GγC), 18q12.2 (rs2162440 GγT), and OBFC1 (rs10786775 CγG, rs11591710 AγC) were genotyped in four studies comprised of 2353 subjects out of which 1148 had CHD and 566 T2D. Three SNPs (rs12696304 CγG, rs10936601G>T and rs16847897 GγC) at the TERC locus were genotyped in these four studies, in addition to an offspring study of 765 healthy students. For all samples, LTL had been measured using a real-time PCR-based method.
Results
Only one SNP was associated with a significant effect on LTL, with the minor allele G of OBFC1 rs10786775 SNP being associated with longer LTL (β=0.029, P=0.04). No SNPs were significantly associated with CHD or T2D. For OBFC1 the haplotype carrying both rare alleles (rs10786775G and rs11591710C, haplotype frequency 0.089) was associated with lower CHD prevalence (OR: 0.77; 95% CI: 0.61–0.97; P= 0.03). The TERC haplotype GTC (rs12696304G, rs10936601T and rs16847897C, haplotype frequency 0.210) was associated with lower risk for both CHD (OR: 0.86; 95% CI: 0.75-0.99; P=0.04) and T2D (OR: 0.74; 95% CI: 0.61–0.91; P= 0.004), with no effect on LTL. Only the last association remained after adjusting for multiple testing.
Conclusion
Of reported associations, only that between the OBFC1 rs10786775 SNP and LTL was confirmed, although our study has a limited power to detect modest effects. A 2-SNP OBFC1 haplotype was associated with higher risk of CHD, and a 3-SNP TERC haplotype was associated with both higher risk of CHD and T2D. Further work is required to confirm these results and explore the mechanisms of these effects.
doi:10.1371/journal.pone.0083122
PMCID: PMC3861448  PMID: 24349443
7.  Secretory Phospholipase A2-IIA and Cardiovascular Disease 
Holmes, Michael V. | Simon, Tabassome | Exeter, Holly J. | Folkersen, Lasse | Asselbergs, Folkert W. | Guardiola, Montse | Cooper, Jackie A. | Palmen, Jutta | Hubacek, Jaroslav A. | Carruthers, Kathryn F. | Horne, Benjamin D. | Brunisholz, Kimberly D. | Mega, Jessica L. | van Iperen, Erik P.A. | Li, Mingyao | Leusink, Maarten | Trompet, Stella | Verschuren, Jeffrey J.W. | Hovingh, G. Kees | Dehghan, Abbas | Nelson, Christopher P. | Kotti, Salma | Danchin, Nicolas | Scholz, Markus | Haase, Christiane L. | Rothenbacher, Dietrich | Swerdlow, Daniel I. | Kuchenbaecker, Karoline B. | Staines-Urias, Eleonora | Goel, Anuj | van 't Hooft, Ferdinand | Gertow, Karl | de Faire, Ulf | Panayiotou, Andrie G. | Tremoli, Elena | Baldassarre, Damiano | Veglia, Fabrizio | Holdt, Lesca M. | Beutner, Frank | Gansevoort, Ron T. | Navis, Gerjan J. | Mateo Leach, Irene | Breitling, Lutz P. | Brenner, Hermann | Thiery, Joachim | Dallmeier, Dhayana | Franco-Cereceda, Anders | Boer, Jolanda M.A. | Stephens, Jeffrey W. | Hofker, Marten H. | Tedgui, Alain | Hofman, Albert | Uitterlinden, André G. | Adamkova, Vera | Pitha, Jan | Onland-Moret, N. Charlotte | Cramer, Maarten J. | Nathoe, Hendrik M. | Spiering, Wilko | Klungel, Olaf H. | Kumari, Meena | Whincup, Peter H. | Morrow, David A. | Braund, Peter S. | Hall, Alistair S. | Olsson, Anders G. | Doevendans, Pieter A. | Trip, Mieke D. | Tobin, Martin D. | Hamsten, Anders | Watkins, Hugh | Koenig, Wolfgang | Nicolaides, Andrew N. | Teupser, Daniel | Day, Ian N.M. | Carlquist, John F. | Gaunt, Tom R. | Ford, Ian | Sattar, Naveed | Tsimikas, Sotirios | Schwartz, Gregory G. | Lawlor, Debbie A. | Morris, Richard W. | Sandhu, Manjinder S. | Poledne, Rudolf | Maitland-van der Zee, Anke H. | Khaw, Kay-Tee | Keating, Brendan J. | van der Harst, Pim | Price, Jackie F. | Mehta, Shamir R. | Yusuf, Salim | Witteman, Jaqueline C.M. | Franco, Oscar H. | Jukema, J. Wouter | de Knijff, Peter | Tybjaerg-Hansen, Anne | Rader, Daniel J. | Farrall, Martin | Samani, Nilesh J. | Kivimaki, Mika | Fox, Keith A.A. | Humphries, Steve E. | Anderson, Jeffrey L. | Boekholdt, S. Matthijs | Palmer, Tom M. | Eriksson, Per | Paré, Guillaume | Hingorani, Aroon D. | Sabatine, Marc S. | Mallat, Ziad | Casas, Juan P. | Talmud, Philippa J.
Objectives
This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.
Background
Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy.
Methods
We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable.
Results
PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE.
Conclusions
Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
doi:10.1016/j.jacc.2013.06.044
PMCID: PMC3826105  PMID: 23916927
cardiovascular diseases; drug development; epidemiology; genetics; Mendelian randomization; ACS, acute coronary syndrome(s); CI, confidence interval; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; MVE, major vascular events; OR, odds ratio; RCT, randomized clinical trial; SNP, single-nucleotide polymorphism; sPLA2, secretory phospholipase A2
8.  From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. 
F1000Research  2013;2:242.
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. 
 
We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. 
 
This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
doi:10.12688/f1000research.2-242.v1
PMCID: PMC3931453  PMID: 24627794
9.  Population Genomics of Cardiometabolic Traits: Design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium 
PLoS ONE  2013;8(8):e71345.
Substantial advances have been made in identifying common genetic variants influencing cardiometabolic traits and disease outcomes through genome wide association studies. Nevertheless, gaps in knowledge remain and new questions have arisen regarding the population relevance, mechanisms, and applications for healthcare. Using a new high-resolution custom single nucleotide polymorphism (SNP) array (Metabochip) incorporating dense coverage of genomic regions linked to cardiometabolic disease, the University College-London School-Edinburgh-Bristol (UCLEB) consortium of highly-phenotyped population-based prospective studies, aims to: (1) fine map functionally relevant SNPs; (2) precisely estimate individual absolute and population attributable risks based on individual SNPs and their combination; (3) investigate mechanisms leading to altered risk factor profiles and CVD events; and (4) use Mendelian randomisation to undertake studies of the causal role in CVD of a range of cardiovascular biomarkers to inform public health policy and help develop new preventative therapies.
doi:10.1371/journal.pone.0071345
PMCID: PMC3748096  PMID: 23977022
10.  A gene-centric study of common carotid artery remodelling 
Atherosclerosis  2013;226(2):440-446.
Background
Expansive remodelling is the process of compensatory arterial enlargement in response to atherosclerotic stimuli. The genetic determinants of this process are poorly characterized.
Methods
Genetic association analyses of inter-adventitial common carotid artery diameter (ICCAD) in the IMPROVE study (n = 3427) using the Illumina 200k Metabochip was performed. Single nucleotide polymorphisms (SNPs) that met array-wide significance were taken forward for analysis in three further studies (n = 5704), and tested for association with Abdominal Aortic Aneurysm (AAA).
Results
rs3768445 on Chromosome 1q24.3, in a cluster of protein coding genes (DNM3, PIGC, C1orf105) was associated with larger ICCAD in the IMPROVE study. For each copy of the rare allele carried, ICCAD was on average 0.13 mm greater (95% CI 0.08–0.18 mm, P = 8.2 × 10−8). A proxy SNP (rs4916251, R2 = 0.99) did not, however, show association with ICCAD in three follow-up studies (P for replication = 0.29). There was evidence of interaction between carotid intima-media thickness (CIMT) and rs4916251 on ICCAD in two of the cohorts studies suggesting that it plays a role in the remodelling response to atherosclerosis. In meta-analysis of 5 case–control studies pooling data from 5007 cases and 43,630 controls, rs4916251 was associated with presence of AAA 1.10, 95% CI 1.03–1.17, p = 2.8 × 10−3, I2 = 18.8, Q = 0.30). A proxy SNP, rs4916251 was also associated with increased expression of PIGC in aortic tissue, suggesting that this may the mechanism by which this locus affects vascular remodelling.
Conclusions
Common variation at 1q24.3 is associated with expansive vascular remodelling and risk of AAA. These findings support a hypothesis that pathways involved in systemic vascular remodelling play a role in AAA development.
Highlights
► In the IMPROVE study (n > 3000) variants at 1q24.3 were strongly associated with larger carotid diameters. ► The lead variant was associated with Abdominal Aortic Aneurysm (AAA) in meta-analysis of 5 studies (n > 50,000). ► Variants at 1q24.3 appear to be associated with vascular remodelling and risk of AAA.
doi:10.1016/j.atherosclerosis.2012.11.002
PMCID: PMC3573227  PMID: 23246012
Abdominal aortic aneurysm; Genome-wide association studies; Vascular remodelling; Carotid artery
11.  Use of Allele-Specific FAIRE to Determine Functional Regulatory Polymorphism Using Large-Scale Genotyping Arrays 
PLoS Genetics  2012;8(8):e1002908.
Following the widespread use of genome-wide association studies (GWAS), focus is turning towards identification of causal variants rather than simply genetic markers of diseases and traits. As a step towards a high-throughput method to identify genome-wide, non-coding, functional regulatory variants, we describe the technique of allele-specific FAIRE, utilising large-scale genotyping technology (FAIRE-gen) to determine allelic effects on chromatin accessibility and regulatory potential. FAIRE-gen was explored using lymphoblastoid cells and the 50,000 SNP Illumina CVD BeadChip. The technique identified an allele-specific regulatory polymorphism within NR1H3 (coding for LXR-α), rs7120118, coinciding with a previously GWAS-identified SNP for HDL-C levels. This finding was confirmed using FAIRE-gen with the 200,000 SNP Illumina Metabochip and verified with the established method of TaqMan allelic discrimination. Examination of this SNP in two prospective Caucasian cohorts comprising 15,000 individuals confirmed the association with HDL-C levels (combined beta = 0.016; p = 0.0006), and analysis of gene expression identified an allelic association with LXR-α expression in heart tissue. Using increasingly comprehensive genotyping chips and distinct tissues for examination, FAIRE-gen has the potential to aid the identification of many causal SNPs associated with disease from GWAS.
Author Summary
The identification of genetic variants associated with complex diseases has rapidly grown through lowering costs of genome sequencing and the use of large-scale genotyping chips based on this sequencing data. There have not been corresponding advances in the identification of causal genetic variants compared to variants simply associated with diseases or traits. Most of these causal variants are thought to be located not within regions coding for proteins, but within genomic regions that regulate the level of protein. We have combined the use of large-scale gene chips with functional analysis, to determine regions of the genome that confer a greater potential for controlling gene regulation dependent on the genotype of that individual. Combining this data with population data and gene expression data, we identify a potential causal variant that alters regulation of LXR-α, a key mediator in lipid metabolism, and show that this variant is associated with HDL-C levels. This methodology provides a model for future analyses to identify further causal variants for disease.
doi:10.1371/journal.pgen.1002908
PMCID: PMC3420950  PMID: 22916038
12.  Functional Analysis of Two PLA2G2A Variants Associated with Secretory Phospholipase A2-IIA Levels 
PLoS ONE  2012;7(7):e41139.
Background
Secretory phospholipase A2 group IIA (sPLA2-IIA) has been identified as a biomarker of atherosclerosis in observational and animal studies. The protein is encoded by the PLA2G2A gene and the aim of this study was to test the functionality of two PLA2G2A non-coding SNPs, rs11573156 C>G and rs3767221 T>G where the rare alleles have been previously associated with higher and lower sPLA2-IIA levels respectively.
Methodology/Principal Findings
Luciferase assays, electrophoretic mobility shift assays (EMSA), and RNA expression by RT-PCR were used to examine allelic differences. For rs3767221 the G allele showed ∼55% lower luciferase activity compared to the T allele (T = 62.1 (95% CI 59.1 to 65.1) G = 27.8 (95% CI 25.0 to 30.6), p = 1.22×10−35, and stronger EMSA binding of a nuclear protein compared to the T-allele. For rs11573156 C >G there were no luciferase or EMSA allelic differences seen. In lymphocyte cell RNA, from individuals of known rs11573156 genotype, there was no allelic RNA expression difference for exons 5 and 6, but G allele carriers (n = 7) showed a trend to lower exon 1–2 expression compared to CC individuals. To take this further, in the ASAP study (n = 223), an rs11573156 proxy (r2 = 0.91) showed ∼25% higher liver expression of PLA2G2A (1.67×10−17) associated with the G allele. However, considering exon specific expression, the association was greatly reduced for exon 2 (4.5×10−5) compared to exons 3–6 (10−10 to 10−20), suggesting rs11573156 G allele-specific exon 2 skipping.
Conclusion
Both SNPs are functional and provide useful tools for Mendelian Randomisation to determine whether the relationship between sPLA2-IIA and coronary heart disease is causal.
doi:10.1371/journal.pone.0041139
PMCID: PMC3412631  PMID: 22879865
13.  PLA2G7 genotype, Lp-PLA2 activity and coronary heart disease risk in 10,494 cases and 15,624 controls of European ancestry 
Circulation  2010;121(21):2284-2293.
Background
Higher Lp-PLA2 activity is associated with increased risk of coronary heart disease (CHD), making Lp-PLA2 a potential therapeutic target. PLA2G7 variants associated with Lp-PLA2 activity could evaluate whether this relationship is causal.
Methods and Results
A meta-analysis including a total of 12 studies (5 prospective, 4 case-control, 1 case-only and 2 cross-sectional, n=26,118) was undertaken to examine the association of: (i) LpPLA2 activity vs. cardiovascular biomarkers and risk factors and CHD events (two prospective studies; n=4884); ii) PLA2G7 SNPs and Lp-PLA2 activity (3 prospective, 2 case-control, 2 cross-sectional studies; up to n=6094); and iii) PLA2G7 SNPs and angiographic coronary artery disease (2 case-control, 1 case-only study; n=4971 cases) and CHD events (5 prospective, 2 case-control studies; n=5523). Lp-PLA2 activity correlated with several CHD risk markers. Hazard ratio for CHD events top vs. bottom quartile of Lp-PLA2 activity was 1.61 (95%CI: 1.31, 1.99) and 1.17 (95%CI: 0.91, 1.51) after adjustment for baseline traits. Of seven SNPs, rs1051931 (A379V) showed the strongest association with Lp-PLA2 activity, VV subjects having 7.2% higher activity than AAs. Genotype was not associated with risk markers, angiographic coronary disease (OR 1.03 (95%CI 0.80, 1.32), or CHD events (OR 0.98 (95%CI 0.82, 1.17).
Conclusions
Unlike Lp-PLA2 activity, PLA2G7 variants associated with modest effects on Lp-PLA2 activity were not associated with cardiovascular risk markers, coronary atheroma or CHD. Larger association studies, identification of SNPs with larger effects, or randomised trials of specific Lp-PLA2 inhibitors are needed to confirm/refute a contributory role for Lp-PLA2 in CHD.
doi:10.1161/CIRCULATIONAHA.109.923383
PMCID: PMC3377948  PMID: 20479152
genetics; epidemiology; risk factors; Mendelian randomization
14.  The Representation of Heart Development in the Gene Ontology 
Developmental Biology  2011;354(1):9-17.
An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling.
In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development and aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject.
The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area.
doi:10.1016/j.ydbio.2011.03.011
PMCID: PMC3302178  PMID: 21419760
annotation; cardiovascular; development; Gene Ontology; heart
15.  R1: The relationship between plasma Angiopoietin-like protein 4 (Angptl4) levels, ANGPTL4 genotype and coronary heart disease risk 
Objective
To investigate the relationship between Angiopoietin-like protein 4 (Angptl4) levels, CHD biomarkers and ANGPTL4 variants.
Methods and Results
Plasma Angptl4 was quantified in 666 subjects of the Northwick Park Heart Study II using a validated ELISA. Seven ANGPTL4 SNPs were genotyped and CHD biomarkers assessed in the whole cohort (n=2775). Weighted mean (±SD) plasma Angptl4 levels were 10.0(±11.0) ng/ml. Plasma Angptl4 concentration correlated positively with age (r=0.15, P<0.001), body fat mass (r=0.19, P=0.003) but negatively with plasma HDL-cholesterol (r=−0.13, P=0.01). No correlation with triglycerides was observed. T266M was independently associated with plasma Angptl4 levels (P<0.001), but not associated with triglycerides or with CHD risk in the meta-analysis of five studies (4,061 cases/15,395 controls). E40K showed no independent association with plasma Angptl4 levels. In HEK293 and Huh7 cells compared to wild-type, E40K and T266M showed significantly altered synthesis and secretion, respectively.
Conclusions
These data suggest that circulating Angptl4 levels do not influence triglyceride levels or CHD risk since (1) Angptl4 levels were not correlated with triglycerides, (2) T266M, although associated with Angptl4 levels, showed no association with plasma triglycerides (3) Triglyceride-lowering E40K did not influence Angptl4 levels. These results provide new insights into the role of Angptl4 in triglyceride metabolism.
doi:10.1161/ATVBAHA.110.212209
PMCID: PMC3319296  PMID: 20829508
Angplt4; E40K; T266M; cardiovascular disease; LPL
16.  Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk 
PLoS ONE  2012;7(3):e31930.
Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5–7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4×10−5, allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8×10−10) and intron 8 polymorphism rs9930761-T>C (5.6×10−8) (in high linkage disequilibrium with allele frequencies 6–7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.
The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6×10−28 and rs5883 p = 8.6×10−10, adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29–4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.
doi:10.1371/journal.pone.0031930
PMCID: PMC3293889  PMID: 22403620
17.  Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile 
Kilpeläinen, Tuomas O | Zillikens, M Carola | Stančáková, Alena | Finucane, Francis M | Ried, Janina S | Langenberg, Claudia | Zhang, Weihua | Beckmann, Jacques S | Luan, Jian’an | Vandenput, Liesbeth | Styrkarsdottir, Unnur | Zhou, Yanhua | Smith, Albert Vernon | Zhao, Jing-Hua | Amin, Najaf | Vedantam, Sailaja | Shin, So Youn | Haritunians, Talin | Fu, Mao | Feitosa, Mary F | Kumari, Meena | Halldorsson, Bjarni V | Tikkanen, Emmi | Mangino, Massimo | Hayward, Caroline | Song, Ci | Arnold, Alice M | Aulchenko, Yurii S | Oostra, Ben A | Campbell, Harry | Cupples, L Adrienne | Davis, Kathryn E | Döring, Angela | Eiriksdottir, Gudny | Estrada, Karol | Fernández-Real, José Manuel | Garcia, Melissa | Gieger, Christian | Glazer, Nicole L | Guiducci, Candace | Hofman, Albert | Humphries, Steve E | Isomaa, Bo | Jacobs, Leonie C | Jula, Antti | Karasik, David | Karlsson, Magnus K | Khaw, Kay-Tee | Kim, Lauren J | Kivimäki, Mika | Klopp, Norman | Kühnel, Brigitte | Kuusisto, Johanna | Liu, Yongmei | Ljunggren, Östen | Lorentzon, Mattias | Luben, Robert N | McKnight, Barbara | Mellström, Dan | Mitchell, Braxton D | Mooser, Vincent | Moreno, José Maria | Männistö, Satu | O’Connell, Jeffery R | Pascoe, Laura | Peltonen, Leena | Peral, Belén | Perola, Markus | Psaty, Bruce M | Salomaa, Veikko | Savage, David B | Semple, Robert K | Skaric-Juric, Tatjana | Sigurdsson, Gunnar | Song, Kijoung S | Spector, Timothy D | Syvänen, Ann-Christine | Talmud, Philippa J | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Uitterlinden, André G | van Duijn, Cornelia M | Vidal-Puig, Antonio | Wild, Sarah H | Wright, Alan F | Clegg, Deborah J | Schadt, Eric | Wilson, James F | Rudan, Igor | Ripatti, Samuli | Borecki, Ingrid B | Shuldiner, Alan R | Ingelsson, Erik | Jansson, John-Olov | Kaplan, Robert C | Gudnason, Vilmundur | Harris, Tamara B | Groop, Leif | Kiel, Douglas P | Rivadeneira, Fernando | Walker, Mark | Barroso, Inês | Vollenweider, Peter | Waeber, Gérard | Chambers, John C | Kooner, Jaspal S | Soranzo, Nicole | Hirschhorn, Joel N | Stefansson, Kari | Wichmann, H-Erich | Ohlsson, Claes | O’Rahilly, Stephen | Wareham, Nicholas J | Speliotes, Elizabeth K | Fox, Caroline S | Laakso, Markku | Loos, Ruth J F
Nature Genetics  2011;43(8):753-760.
Genome-wide association studies have identified 32 loci associated with body mass index (BMI), a measure that does not allow distinguishing lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ~2.5 million SNPs and body fat percentage from 36,626 individuals, and followed up the 14 most significant (P<10−6) independent loci in 39,576 individuals. We confirmed the previously established adiposity locus in FTO (P=3×10−26), and identified two new loci associated with body fat percentage, one near IRS1 (P=4×10−11) and one near SPRY2 (P=3×10−8). Both loci harbour genes with a potential link to adipocyte physiology, of which the locus near IRS1 shows an intriguing association pattern. The body-fat-decreasing allele associates with decreased IRS1 expression and with an impaired metabolic profile, including decreased subcutaneous-to-visceral fat ratio, increased insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease, and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
doi:10.1038/ng.866
PMCID: PMC3262230  PMID: 21706003
18.  The Impact of Focused Gene Ontology Curation of Specific Mammalian Systems 
PLoS ONE  2011;6(12):e27541.
The Gene Ontology (GO) resource provides dynamic controlled vocabularies to provide an information-rich resource to aid in the consistent description of the functional attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). System-focused projects, such as the Renal and Cardiovascular GO Annotation Initiatives, aim to provide detailed GO data for proteins implicated in specific organ development and function. Such projects support the rapid evaluation of new experimental data and aid in the generation of novel biological insights to help alleviate human disease. This paper describes the improvement of GO data for renal and cardiovascular research communities and demonstrates that the cardiovascular-focused GO annotations, created over the past three years, have led to an evident improvement of microarray interpretation. The reanalysis of cardiovascular microarray datasets confirms the need to continue to improve the annotation of the human proteome.
Availability
GO annotation data is freely available from: ftp://ftp.geneontology.org/pub/go/gene-associations/
doi:10.1371/journal.pone.0027541
PMCID: PMC3235096  PMID: 22174742
19.  Haplotype and genotype effects of the F7 gene on circulating factor VII, coagulation activation markers and incident coronary heart disease in UK men 
Background
Evidence for the associations of single nucleotide polymorphisms (SNPs) in the F7 gene and factor VII (FVII) levels and with risk of coronary heart disease (CHD) is inconsistent. We examined whether F7 tagging SNPs and haplotypes were associated with FVII levels, coagulation activation markers (CAMs) and CHD risk in two cohorts of UK men.
Methods
Genotypes for eight SNPs and baseline levels of FVIIc, FVIIag, and CAMs (including FVIIa) were determined in 2773 healthy men from the Second Northwick Park Heart Study (NPHS-II). A second cohort, Whitehall II study (WH-II, n=4055), was used for replication analysis of FVIIc levels and CHD-risk.
Results
In NPHS-II the minor alleles of three SNPs (rs555212, rs762635, and rs510317; haplotype H2) were associated with higher levels of FVIIag, FVIIc, and FVIIa, while the minor allele for two SNPs (I/D323, and rs6046; haplotype H5) were associated with lower levels. Adjusted for classical risk factors, H2 carriers had a CHD Hazard Ratio of 1.34 (CI 95%: 1.12–1.59; independent of FVIIc), while H5 carriers had a CHD-risk of 1.29 (CI 95%: 1.01–1.56; not independent of FVIIc) and significantly lower CAMs. Effects of haplotypes on FVIIc levels were replicated in WH-II, as was association of H5 with higher CHD-risk (pooled-estimate OR 1.16 [1.00–1.36], P=0.05), but surprisingly, H2 exhibited a reduced risk for CHD.
Conclusion
tSNPs in the F7 gene strongly influence FVII levels. The haplotype associated with low FVIIc level, with particularly reduced functional activity, was consistently associated with increased risk for CHD, while the haplotype associated with high FVIIc level was not.
doi:10.1111/j.1538-7836.2010.04035.x
PMCID: PMC3226948  PMID: 20735728
Factor VII; F7 gene; tagging SNPs; haplotypes; incident coronary heart disease
20.  Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials 
Lancet  2011;378(9791):584-594.
Summary
Background
The MTHFR 677C→T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C→T and stroke in a genetic analysis and meta-analysis of randomised controlled trials.
Methods
We established a collaboration of genetic studies consisting of 237 datasets including 59 995 individuals with data for homocysteine and 20 885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45 549 individuals, 2314 stroke events, 269 transient ischaemic attacks).
Findings
The effect of the MTHFR 677C→T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 μmol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 μmol/L, −0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar folate status (predicted RR 1·00, 95% CI 0·90 to 1·11). Although the predicted effect of homocysteine reduction from large genetic studies in low folate regions (Asia) was larger (RR 0·78, 95% CI 0·68 to 0·90), no trial has evaluated the effect of lowering of homocysteine on stroke risk exclusively in a low folate region.
Interpretation
In regions with increasing levels or established policies of population folate supplementation, evidence from genetic studies and randomised trials is concordant in suggesting an absence of benefit from lowering of homocysteine for prevention of stroke. Further large-scale genetic studies of the association between MTHFR 677C→T and stroke in low folate settings are needed to distinguish effect modification by folate from small-study bias. If future randomised trials of homocysteine-lowering interventions for stroke prevention are undertaken, they should take place in regions with low folate consumption.
Funding
Full funding sources listed at end of paper (see Acknowledgments).
doi:10.1016/S0140-6736(11)60872-6
PMCID: PMC3156981  PMID: 21803414
21.  Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration 
European Heart Journal  2011;33(3):393-407.
Aims
To evaluate the associations of emergent genome-wide-association study-derived coronary heart disease (CHD)-associated single nucleotide polymorphisms (SNPs) with established and emerging risk factors, and the association of genome-wide-association study-derived lipid-associated SNPs with other risk factors and CHD events.
Methods and results
Using two case–control studies, three cross-sectional, and seven prospective studies with up to 25 000 individuals and 5794 CHD events we evaluated associations of 34 genome-wide-association study-identified SNPs with CHD risk and 16 CHD-associated risk factors or biomarkers. The Ch9p21 SNPs rs1333049 (OR 1.17; 95% confidence limits 1.11–1.24) and rs10757274 (OR 1.17; 1.09–1.26), MIA3 rs17465637 (OR 1.10; 1.04–1.15), Ch2q36 rs2943634 (OR 1.08; 1.03–1.14), APC rs383830 (OR 1.10; 1.02, 1.18), MTHFD1L rs6922269 (OR 1.10; 1.03, 1.16), CXCL12 rs501120 (OR 1.12; 1.04, 1.20), and SMAD3 rs17228212 (OR 1.11; 1.05, 1.17) were all associated with CHD risk, but not with the CHD biomarkers and risk factors measured. Among the 20 blood lipid-related SNPs, LPL rs17411031 was associated with a lower risk of CHD (OR 0.91; 0.84–0.97), an increase in Apolipoprotein AI and HDL-cholesterol, and reduced triglycerides. SORT1 rs599839 was associated with CHD risk (OR 1.20; 1.15–1.26) as well as total- and LDL-cholesterol, and apolipoprotein B. ANGPTL3 rs12042319 was associated with CHD risk (OR 1.11; 1.03, 1.19), total- and LDL-cholesterol, triglycerides, and interleukin-6.
Conclusion
Several SNPs predicting CHD events appear to involve pathways not currently indexed by the established or emerging risk factors; others involved changes in blood lipids including triglycerides or HDL-cholesterol as well as LDL-cholesterol. The overlapping association of SNPs with multiple risk factors and biomarkers supports the existence of shared points of regulation for these phenotypes.
doi:10.1093/eurheartj/ehr225
PMCID: PMC3270041  PMID: 21804106
Coronary disease; Lipids; Genes; Risk factors
22.  ANGPTL4 variants E40K and T266M are associated with lower fasting triglyceride levels in Non-Hispanic White Americans from the Look AHEAD Clinical Trial 
BMC Medical Genetics  2011;12:89.
Background
Elevated triglyceride levels are a risk factor for cardiovascular disease. Angiopoietin-like protein 4 (Angptl4) is a metabolic factor that raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). In non-diabetic individuals, the ANGPTL4 coding variant E40K has been associated with lower plasma triglyceride levels while the T266M variant has been associated with more modest effects on triglyceride metabolism. The objective of this study was to determine whether ANGPTL4 E40K and T266M are associated with triglyceride levels in the setting of obesity and T2D, and whether modification of triglyceride levels by these genetic variants is altered by a lifestyle intervention designed to treat T2D.
Methods
The association of ANGPTL4 E40K and T266M with fasting triglyceride levels was investigated in 2,601 participants from the Look AHEAD Clinical Trial, all of whom had T2D and were at least overweight. Further, we tested for an interaction between genotype and treatment effects on triglyceride levels.
Results
Among non-Hispanic White Look AHEAD participants, ANGPTL4 K40 carriers had mean triglyceride levels of 1.61 ± 0.62 mmol/L, 0.33 mmol/L lower than E40 homozygotes (p = 0.001). Individuals homozygous for the minor M266 allele (MAF 30%) had triglyceride levels of 1.75 ± 0.58 mmol/L, 0.24 mmol/L lower than T266 homozygotes (p = 0.002). The association of the M266 with triglycerides remained significant even after removing K40 carriers from the analysis (p = 0.002). There was no interaction between the weight loss intervention and genotype on triglyceride levels.
Conclusions
This is the first study to demonstrate that the ANGPTL4 E40K and T266M variants are associated with lower triglyceride levels in the setting of T2D. In addition, our findings demonstrate that ANGPTL4 genotype status does not alter triglyceride response to a lifestyle intervention in the Look AHEAD study.
doi:10.1186/1471-2350-12-89
PMCID: PMC3146919  PMID: 21714923
23.  Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study 
Fox, Ervin R. | Young, J. Hunter | Li, Yali | Dreisbach, Albert W. | Keating, Brendan J. | Musani, Solomon K. | Liu, Kiang | Morrison, Alanna C. | Ganesh, Santhi | Kutlar, Abdullah | Ramachandran, Vasan S. | Polak, Josef F. | Fabsitz, Richard R. | Dries, Daniel L. | Farlow, Deborah N. | Redline, Susan | Adeyemo, Adebowale | Hirschorn, Joel N. | Sun, Yan V. | Wyatt, Sharon B. | Penman, Alan D. | Palmas, Walter | Rotter, Jerome I. | Townsend, Raymond R. | Doumatey, Ayo P. | Tayo, Bamidele O. | Mosley, Thomas H. | Lyon, Helen N. | Kang, Sun J. | Rotimi, Charles N. | Cooper, Richard S. | Franceschini, Nora | Curb, J. David | Martin, Lisa W. | Eaton, Charles B. | Kardia, Sharon L.R. | Taylor, Herman A. | Caulfield, Mark J. | Ehret, Georg B. | Johnson, Toby | Chakravarti, Aravinda | Zhu, Xiaofeng | Levy, Daniel | Munroe, Patricia B. | Rice, Kenneth M. | Bochud, Murielle | Johnson, Andrew D. | Chasman, Daniel I. | Smith, Albert V. | Tobin, Martin D. | Verwoert, Germaine C. | Hwang, Shih-Jen | Pihur, Vasyl | Vollenweider, Peter | O'Reilly, Paul F. | Amin, Najaf | Bragg-Gresham, Jennifer L. | Teumer, Alexander | Glazer, Nicole L. | Launer, Lenore | Zhao, Jing Hua | Aulchenko, Yurii | Heath, Simon | Sõber, Siim | Parsa, Afshin | Luan, Jian'an | Arora, Pankaj | Dehghan, Abbas | Zhang, Feng | Lucas, Gavin | Hicks, Andrew A. | Jackson, Anne U. | Peden, John F. | Tanaka, Toshiko | Wild, Sarah H. | Rudan, Igor | Igl, Wilmar | Milaneschi, Yuri | Parker, Alex N. | Fava, Cristiano | Chambers, John C. | Kumari, Meena | JinGo, Min | van der Harst, Pim | Kao, Wen Hong Linda | Sjögren, Marketa | Vinay, D.G. | Alexander, Myriam | Tabara, Yasuharu | Shaw-Hawkins, Sue | Whincup, Peter H. | Liu, Yongmei | Shi, Gang | Kuusisto, Johanna | Seielstad, Mark | Sim, Xueling | Nguyen, Khanh-Dung Hoang | Lehtimäki, Terho | Matullo, Giuseppe | Wu, Ying | Gaunt, Tom R. | Charlotte Onland-Moret, N. | Cooper, Matthew N. | Platou, Carl G.P. | Org, Elin | Hardy, Rebecca | Dahgam, Santosh | Palmen, Jutta | Vitart, Veronique | Braund, Peter S. | Kuznetsova, Tatiana | Uiterwaal, Cuno S.P.M. | Campbell, Harry | Ludwig, Barbara | Tomaszewski, Maciej | Tzoulaki, Ioanna | Palmer, Nicholette D. | Aspelund, Thor | Garcia, Melissa | Chang, Yen-Pei C. | O'Connell, Jeffrey R. | Steinle, Nanette I. | Grobbee, Diederick E. | Arking, Dan E. | Hernandez, Dena | Najjar, Samer | McArdle, Wendy L. | Hadley, David | Brown, Morris J. | Connell, John M. | Hingorani, Aroon D. | Day, Ian N.M. | Lawlor, Debbie A. | Beilby, John P. | Lawrence, Robert W. | Clarke, Robert | Collins, Rory | Hopewell, Jemma C. | Ongen, Halit | Bis, Joshua C. | Kähönen, Mika | Viikari, Jorma | Adair, Linda S. | Lee, Nanette R. | Chen, Ming-Huei | Olden, Matthias | Pattaro, Cristian | Hoffman Bolton, Judith A. | Köttgen, Anna | Bergmann, Sven | Mooser, Vincent | Chaturvedi, Nish | Frayling, Timothy M. | Islam, Muhammad | Jafar, Tazeen H. | Erdmann, Jeanette | Kulkarni, Smita R. | Bornstein, Stefan R. | Grässler, Jürgen | Groop, Leif | Voight, Benjamin F. | Kettunen, Johannes | Howard, Philip | Taylor, Andrew | Guarrera, Simonetta | Ricceri, Fulvio | Emilsson, Valur | Plump, Andrew | Barroso, Inês | Khaw, Kay-Tee | Weder, Alan B. | Hunt, Steven C. | Bergman, Richard N. | Collins, Francis S. | Bonnycastle, Lori L. | Scott, Laura J. | Stringham, Heather M. | Peltonen, Leena | Perola, Markus | Vartiainen, Erkki | Brand, Stefan-Martin | Staessen, Jan A. | Wang, Thomas J. | Burton, Paul R. | SolerArtigas, Maria | Dong, Yanbin | Snieder, Harold | Wang, Xiaoling | Zhu, Haidong | Lohman, Kurt K. | Rudock, Megan E. | Heckbert, Susan R. | Smith, Nicholas L. | Wiggins, Kerri L. | Shriner, Daniel | Veldre, Gudrun | Viigimaa, Margus | Kinra, Sanjay | Prabhakaran, Dorairajan | Tripathy, Vikal | Langefeld, Carl D. | Rosengren, Annika | Thelle, Dag S. | MariaCorsi, Anna | Singleton, Andrew | Forrester, Terrence | Hilton, Gina | McKenzie, Colin A. | Salako, Tunde | Iwai, Naoharu | Kita, Yoshikuni | Ogihara, Toshio | Ohkubo, Takayoshi | Okamura, Tomonori | Ueshima, Hirotsugu | Umemura, Satoshi | Eyheramendy, Susana | Meitinger, Thomas | Wichmann, H.-Erich | Cho, Yoon Shin | Kim, Hyung-Lae | Lee, Jong-Young | Scott, James | Sehmi, Joban S. | Zhang, Weihua | Hedblad, Bo | Nilsson, Peter | Smith, George Davey | Wong, Andrew | Narisu, Narisu | Stančáková, Alena | Raffel, Leslie J. | Yao, Jie | Kathiresan, Sekar | O'Donnell, Chris | Schwartz, Steven M. | Arfan Ikram, M. | Longstreth, Will T. | Seshadri, Sudha | Shrine, Nick R.G. | Wain, Louise V. | Morken, Mario A. | Swift, Amy J. | Laitinen, Jaana | Prokopenko, Inga | Zitting, Paavo | Cooper, Jackie A. | Humphries, Steve E. | Danesh, John | Rasheed, Asif | Goel, Anuj | Hamsten, Anders | Watkins, Hugh | Bakker, Stephan J.L. | van Gilst, Wiek H. | Janipalli, Charles S. | Radha Mani, K. | Yajnik, Chittaranjan S. | Hofman, Albert | Mattace-Raso, Francesco U.S. | Oostra, Ben A. | Demirkan, Ayse | Isaacs, Aaron | Rivadeneira, Fernando | Lakatta, Edward G. | Orru, Marco | Scuteri, Angelo | Ala-Korpela, Mika | Kangas, Antti J. | Lyytikäinen, Leo-Pekka | Soininen, Pasi | Tukiainen, Taru | Würz, Peter | Twee-Hee Ong, Rick | Dörr, Marcus | Kroemer, Heyo K. | Völker, Uwe | Völzke, Henry | Galan, Pilar | Hercberg, Serge | Lathrop, Mark | Zelenika, Diana | Deloukas, Panos | Mangino, Massimo | Spector, Tim D. | Zhai, Guangju | Meschia, James F. | Nalls, Michael A. | Sharma, Pankaj | Terzic, Janos | Kranthi Kumar, M.J. | Denniff, Matthew | Zukowska-Szczechowska, Ewa | Wagenknecht, Lynne E. | Fowkes, Gerald R. | Charchar, Fadi J. | Schwarz, Peter E.H. | Hayward, Caroline | Guo, Xiuqing | Bots, Michiel L. | Brand, Eva | Samani, Nilesh J. | Polasek, Ozren | Talmud, Philippa J. | Nyberg, Fredrik | Kuh, Diana | Laan, Maris | Hveem, Kristian | Palmer, Lyle J. | van der Schouw, Yvonne T. | Casas, Juan P. | Mohlke, Karen L. | Vineis, Paolo | Raitakari, Olli | Wong, Tien Y. | Shyong Tai, E. | Laakso, Markku | Rao, Dabeeru C. | Harris, Tamara B. | Morris, Richard W. | Dominiczak, Anna F. | Kivimaki, Mika | Marmot, Michael G. | Miki, Tetsuro | Saleheen, Danish | Chandak, Giriraj R. | Coresh, Josef | Navis, Gerjan | Salomaa, Veikko | Han, Bok-Ghee | Kooner, Jaspal S. | Melander, Olle | Ridker, Paul M. | Bandinelli, Stefania | Gyllensten, Ulf B. | Wright, Alan F. | Wilson, James F. | Ferrucci, Luigi | Farrall, Martin | Tuomilehto, Jaakko | Pramstaller, Peter P. | Elosua, Roberto | Soranzo, Nicole | Sijbrands, Eric J.G. | Altshuler, David | Loos, Ruth J.F. | Shuldiner, Alan R. | Gieger, Christian | Meneton, Pierre | Uitterlinden, Andre G. | Wareham, Nicholas J. | Gudnason, Vilmundur | Rettig, Rainer | Uda, Manuela | Strachan, David P. | Witteman, Jacqueline C.M. | Hartikainen, Anna-Liisa | Beckmann, Jacques S. | Boerwinkle, Eric | Boehnke, Michael | Larson, Martin G. | Järvelin, Marjo-Riitta | Psaty, Bruce M. | Abecasis, Gonçalo R. | Elliott, Paul | van Duijn , Cornelia M. | Newton-Cheh, Christopher
Human Molecular Genetics  2011;20(11):2273-2284.
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
doi:10.1093/hmg/ddr092
PMCID: PMC3090190  PMID: 21378095
24.  APOE/C1/C4/C2 Gene Cluster Genotypes, Haplotypes and Lipid Levels in Prospective Coronary Heart Disease Risk Among UK Healthy Men 
Molecular Medicine  2010;16(9-10):389-399.
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42–0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56–0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04–1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
doi:10.2119/molmed.2010.00044
PMCID: PMC2935949  PMID: 20498921
25.  Application of statistical and functional methodologies for the investigation of genetic determinants of coronary heart disease biomarkers: lipoprotein lipase genotype and plasma triglycerides as an exemplar 
Human Molecular Genetics  2010;19(20):3936-3947.
Genome-wide association studies have proved very successful in identifying novel single-nucleotide polymorphisms (SNPs) associated with disease or traits, but the related, functional SNP is usually unknown. In this paper, we describe a methodology to locate and validate candidate functional SNPs using lipoprotein lipase (LPL), a gene previously associated with triglyceride levels, as an exemplar. Two thousand seven hundred and eighty-six healthy middle-aged men from the NPHSII UK prospective study (with up to six measures of plasma lipid levels) were genotyped for 20 LPL tagging (t)SNPs using Illumina Bead technology. Using model-selection procedures and haplotypes, we identified eight SNPs that consistently maximized the fit of the model to the phenotype. Fifteen SNPs in high linkage disequilibrium with these were identified, and functional assays were carried out on all 23 SNPs. Electrophoretic mobility shift assay (EMSA) was used to identify SNPs that had the potential to alter DNA–protein interactions, reducing the number to eight possible candidate SNPs. These were examined for ability to alter expression using a luciferase reporter assay, and two regulatory SNPs, showing genotype differences, rs327 and rs3289, were identified. Finally, multiplexed-competitor-EMSA (MC-EMSA) and supershift EMSA identified FOXA2 to rs327T, and CREB-binding protein (CBP) and CCAAT displacement protein (CDP) to rs3289C as the factors responsible for transcription binding. We have identified two novel candidate functional SNPs in LPL and presented a procedure aimed to efficiently detect SNPs potentially causal to genetic association. We believe that this methodology could be successfully applied to future re-sequencing data.
doi:10.1093/hmg/ddq308
PMCID: PMC2947402  PMID: 20650961

Results 1-25 (31)