PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia 
PLoS ONE  2014;9(6):e99892.
Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.
doi:10.1371/journal.pone.0099892
PMCID: PMC4062455  PMID: 24940743
2.  Treatment with Olanzapine is Associated with Modulation of the Default Mode Network in Patients with Schizophrenia 
Neuropsychopharmacology  2009;35(4):904-912.
Earlier studies have shown widespread alterations of functional connectivity of various brain networks in schizophrenia, including the default mode network (DMN). The DMN has also an important role in the performance of cognitive tasks. Furthermore, treatment with second-generation antipsychotic drugs may ameliorate to some degree working memory (WM) deficits and related brain activity. The aim of this study was to evaluate the effects of treatment with olanzapine monotherapy on functional connectivity among brain regions of the DMN during WM. Seventeen patients underwent an 8-week prospective study and completed two functional magnetic resonance imaging (fMRI) scans at 4 and 8 weeks of treatment during the performance of the N-back WM task. To control for potential repetition effects, 19 healthy controls also underwent two fMRI scans at a similar time interval. We used spatial group-independent component analysis (ICA) to analyze fMRI data. Relative to controls, patients with schizophrenia had reduced connectivity strength within the DMN in posterior cingulate, whereas it was greater in precuneus and inferior parietal lobule. Treatment with olanzapine was associated with increases in DMN connectivity with ventromedial prefrontal cortex, but not in posterior regions of DMN. These results suggest that treatment with olanzapine is associated with the modulation of DMN connectivity in schizophrenia. In addition, our findings suggest critical functional differences in the regions of DMN.
doi:10.1038/npp.2009.192
PMCID: PMC3055362  PMID: 19956088
default mode network; schizophrenia; antipsychotics; working memory; ventromedial prefrontal cortex; fMRI; Biological Psychiatry; Imaging; Clinical or Preclinical; Schizophrenia/Antipsychotics; Cognition; default mode network; ventromedial prefrontal cortex; fMRI; olanzapine
3.  Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans 
Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2, rs1076560, guanine>thymine - G>T) shifts splicing of the two protein isoforms (D2 short, D2S, mainly presynaptic, and D2 long, D2L) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced ‘emotion control’ compared with GT subjects. fMRI in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.
doi:10.1523/JNEUROSCI.3609-09.2009
PMCID: PMC2834475  PMID: 19940176
amygdala; DRD2; dopamine; emotion; fMRI; prefrontal cortex
4.  Association of the Ser704Cys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding 
The European journal of neuroscience  2008;28(10):2129-2136.
A common nonsynonymous single nucleotide polymorphism leading to a serine-to-cysteine substitution at amino acid 704 (Ser704Cys) in the DISC1 protein sequence has been recently associated with schizophrenia and with specific hippocampal abnormalities. Here, we used multimodal neuroimaging to investigate in a large sample of healthy subjects the putative association of the Ser704Cys DISC1 polymorphism with in vivo brain phenotypes including hippocampal formation (HF) gray matter volume and function (as assessed with functional MRI) as well as HF functional coupling with the neural network engaged during encoding of recognition memory. Individuals homozygous for DISC1 Ser allele relative to carriers of the Cys allele showed greater gray matter volume in the HF. Further, Ser/Ser subjects exhibited greater engagement of the HF together with greater HF–dorsolateral prefrontal cortex functional coupling during memory encoding, in spite of similar behavioral performance. These findings consistently support the notion that Ser704Cys DISC1 polymorphism is physiologically relevant. Moreover, they support the hypothesis that genetic variation in DISC1 may affect the risk for schizophrenia by modifying hippocampal gray matter and function.
doi:10.1111/j.1460-9568.2008.06482.x
PMCID: PMC2865560  PMID: 19046394
DISC1; fMRI; gray matter; hippocampus; memory encoding; phenotypic variance
5.  Genetically Determined Measures of Striatal D2 Signaling Predict Prefrontal Activity during Working Memory Performance 
PLoS ONE  2010;5(2):e9348.
Background
Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.
Methods
Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory.
Results
Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.
Conclusions
Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.
doi:10.1371/journal.pone.0009348
PMCID: PMC2825256  PMID: 20179754
6.  Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia 
Brain  2008;132(2):417-425.
Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case–control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.
doi:10.1093/brain/awn248
PMCID: PMC2640212  PMID: 18829695
dopamine; D2 receptor; working memory; prefrontal cortex; striatum
7.  Changes in prefrontal and amygdala activity during olanzapine treatment in schizophrenia 
Psychiatry research  2009;173(1):31-38.
Earlier imaging studies in schizophrenia have reported abnormal amygdala and prefrontal cortex activity during emotion processing. We investigated with functional magnetic resonance imaging (fMRI) during emotion processing changes in activity of the amygdala and of prefrontal cortex in patients with schizophrenia during 8 weeks of olanzapine treatment. Twelve previously drug-free/naive patients with schizophrenia were treated with olanzapine for 8 weeks and underwent two fMRI scans after 4 and 8 weeks of treatment during implicit and explicit emotional processing. Twelve healthy subjects were also scanned twice to control for potential repetition effects. Results showed a diagnosis by time interaction in left amygdala and a diagnosis by time by task interaction in right ventrolateral prefrontal cortex. In particular, activity in left amygdala was greater in patients than in controls at the first scan during both explicit and implicit processing, while it was lower in patients at the second relative to the first scan. Furthermore, during implicit processing, right ventrolateral prefrontal cortex activity was lower in patients than controls at the first scan, while it was greater in patients at the second relative to the first scan. These results suggest that longitudinal treatment with olanzapine may be associated with specific changes in activity of the amygdala and prefrontal cortex during emotional processing in schizophrenia.
doi:10.1016/j.pscychresns.2008.09.001
PMCID: PMC2736305  PMID: 19428222
Amygdala; Antipsychotic drugs; Emotions; Functional magnetic resonance imaging; Schizophrenia
8.  Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans 
Dopamine modulation of neuronal activity during memory tasks identifies a non-linear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D2 receptors (encoded by DRD2) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D2 proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD2 polymorphism (rs1076560) causing reduced presynaptic D2 receptor expression and the DAT 3’-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing BOLD - fMRI during memory tasks and structural MRI. Results indicated a significant DRD2/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD2 allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a non-linear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D2 knock-out animals (D2R−/−) indicate that DAT and D2 proteins interact in vivo. Taken together, our results demonstrate that the interaction between genetic variants in DRD2 and DAT critically modulates the non-linear relationship between dopamine and neuronal activity during memory processing.
doi:10.1523/JNEUROSCI.4858-08.2009
PMCID: PMC2686116  PMID: 19176830
working memory; Recognition Memory; FMRI; Dopamine; Transport; D2; Receptor

Results 1-8 (8)