Search tips
Search criteria

Results 1-25 (130)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  The influence of the CYP2C19*10 allele on clopidogrel activation and CYP2C19*2 genotyping 
Pharmacogenetics and genomics  2014;24(8):381-386.
The polymorphic hepatic enzyme CYP2C19 catalyzes the metabolism of clinically important drugs such as clopidogrel, proton-pump inhibitors, and others and clinical pharmacogenetic testing for clopidogrel is increasingly common. The CYP2C19*10 SNP is located 1 bp upstream the CYP2C19*2 SNP. Despite the low frequency of the CYP2C19*10 allele, its impact on metabolism of CYP2C19 substrates and CYP2C19*2 genotyping makes it an important SNP to consider for pharmacogenetic testing of CYP2C19. However, the effect of the CYP2C19*10 allele on clopidogrel metabolism has not been explored to date. We measured the enzymatic activity of the CYP2C19.10 protein against clopidogrel. The catalytic activity of CYP2C19.10 in the biotransformation of clopidogrel and 2-oxo-clopidgorel was significantly decreased relative to wild type CYP2C19.1B. We also report that the CYP2C19*10 SNP interferes with the CYP2C19*2 TaqMan® genotyping assay, resulting in miscalling of CYP2C19*10/*2 as CYP2C19*2/*2. Our data provide evidence of CYP2C19.10’s reduced metabolism of clopidogrel and 2-oxo-clopidogrel.
PMCID: PMC4090277  PMID: 24945780
CYP2C19*10; Clopidogrel; Pharmacokinetic; Pharmacogenetic; genotyping
2.  Impact of CYP2D6 polymorphisms on clinical efficacy & tolerability of metoprolol tartrate 
Metoprolol is a selective β-1 adrenergic receptor blocker that undergoes extensive metabolism by the polymorphic enzyme, CYP2D6. Our objective was to investigate the influence of CYP2D6 polymorphisms on efficacy and tolerability of metoprolol tartrate. 281 study participants with uncomplicated hypertension received 50 mg of metoprolol twice daily followed by response guided titration to 100 mg twice daily. Phenotypes were assigned based on results of CYP2D6 genotyping and copy number variation assays. Clinical response to metoprolol and adverse effect rates were analyzed in relation to CYP2D6 phenotypes by using appropriate statistical tests. Heart rate response differed significantly by CYP2D6 phenotype (p-value <0.0001) with poor metabolizers & intermediate metabolizers showing greater HR reduction. However, blood pressure response and adverse effect rates were not significantly different by CYP2D6 phenotype. Other than a significant difference in heart rate response, CYP2D6 polymorphisms were not a determinant of the variability in response or tolerability to metoprolol.
PMCID: PMC4111800  PMID: 24637943
CYP2D6; metoprolol; genotype; phenotype; copy number variation; clinical efficacy; tolerability
3.  CYP2C19 Polymorphisms and Therapeutic Drug Monitoring of Voriconazole: Are We Ready for Clinical Implementation of Pharmacogenomics? 
Pharmacotherapy  2014;34(7):703-718.
Since its approval by the United States Food and Drug Administration in 2002, voriconazole has become a key component in the successful treatment of many invasive fungal infections, including the most common, aspergillosis and candidiasis. Despite voriconazole’s widespread use, optimizing its treatment in an individual can be challenging due to significant interpatient variability in plasma concentrations of the drug. Variability is due to nonlinear pharmacokinetics and the influence of patient characteristics such as age, sex, weight, liver disease, and genetic polymorphisms in the cytochrome P450 2C19 gene (CYP2C19) encoding for the CYP2C19 enzyme, the primary enzyme responsible for metabolism of voriconazole. CYP2C19 polymorphisms account for the largest portion of variability in voriconazole exposure, posing significant difficulty to clinicians in targeting therapeutic concentrations. In this review, we discuss the role of CYP2C19 polymorphisms and their influence on voriconazole’s pharmacokinetics, adverse effects, and clinical efficacy. Given the association between CYP2C19 genotype and voriconazole concentrations, as well as the association between voriconazole concentrations and clinical outcomes, particularly efficacy, it seems reasonable to suggest a potential role for CYP2C19 genotype to guide initial voriconazole dose selection followed by therapeutic drug monitoring to increase the probability of achieving efficacy while avoiding toxicity.
PMCID: PMC4082739  PMID: 24510446
voriconazole; pharmacogenomics; pharmacogenetics; CYP2C19 polymorphisms; genotype-guided dosing; pharmacokinetics; antifungal; therapeutic drug monitoring
4.  Alteration in Fasting Glucose after Prolonged Treatment with a Thiazide Diuretic 
Thiazide diuretics are recommended as first line antihypertensive treatment, but may contribute to new onset diabetes. We aimed to describe change in fasting glucose (FG) during prolonged thiazide treatment in an observational setting.
We conducted an observational, non-randomized, open label, follow-up study of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and PEAR-2 studies. We enrolled previous participants from the PEAR or PEAR-2 studies with at least six months of continuous treatment with either hydrochlorothiazide (HCTZ) or chlorthalidone. Linear regression was used to identify associations with changes in FG after prolonged thiazide and thiazide-like diuretic treatment.
A total of 40 participants were included with a mean 29 (range 8–72) months of thiazide treatment. FG increased 6.5 (SD 13.0) mg/dL during short-term thiazide treatment and 3.6 (SD 15.3) mg/dL FG during prolonged thiazide treatment. Increased FG at follow-up was associated with longer thiazide treatment duration (beta=0.34, p=0.008) and lower baseline FG (beta=−0.46, p=0.02). β blocker treatment in combination with prolonged thiazide diuretic treatment was also associated with increased FG and increased two-hour glucose obtained from OGTT.
Our results indicate that prolonged thiazide treatment duration is associated with increased FG and that overall glycemic status worsens when thiazide/thiazide-like diuretics are combined with β blockers.
PMCID: PMC4074403  PMID: 24794890
hypertension; hydrochlorothiazide; chlorthalidone; glucose; diabetes; thiazide diuretics; β blockers
5.  Gene-centric meta-analyses for central adiposity traits in up to 57 412 individuals of European descent confirm known loci and reveal several novel associations 
Yoneyama, Sachiko | Guo, Yiran | Lanktree, Matthew B. | Barnes, Michael R. | Elbers, Clara C. | Karczewski, Konrad J | Padmanabhan, Sandosh | Bauer, Florianne | Baumert, Jens | Beitelshees, Amber | Berenson, Gerald S. | Boer, Jolanda M.A. | Burke, Gregory | Cade, Brian | Chen, Wei | Cooper-Dehoff, Rhonda M. | Gaunt, Tom R. | Gieger, Christian | Gong, Yan | Gorski, Mathias | Heard-Costa, Nancy | Johnson, Toby | Lamonte, Michael J. | Mcdonough, Caitrin | Monda, Keri L. | Onland-Moret, N. Charlotte | Nelson, Christopher P. | O'Connell, Jeffrey R. | Ordovas, Jose | Peter, Inga | Peters, Annette | Shaffer, Jonathan | Shen, Haiqinq | Smith, Erin | Speilotes, Liz | Thomas, Fridtjof | Thorand, Barbara | Monique Verschuren, W. M. | Anand, Sonia S. | Dominiczak, Anna | Davidson, Karina W. | Hegele, Robert A. | Heid, Iris | Hofker, Marten H. | Huggins, Gordon S. | Illig, Thomas | Johnson, Julie A. | Kirkland, Susan | König, Wolfgang | Langaee, Taimour Y. | Mccaffery, Jeanne | Melander, Olle | Mitchell, Braxton D. | Munroe, Patricia | Murray, Sarah S. | Papanicolaou, George | Redline, Susan | Reilly, Muredach | Samani, Nilesh J. | Schork, Nicholas J. | Van Der Schouw, Yvonne T. | Shimbo, Daichi | Shuldiner, Alan R. | Tobin, Martin D. | Wijmenga, Cisca | Yusuf, Salim | Hakonarson, Hakon | Lange, Leslie A. | Demerath, Ellen W | Fox, Caroline S. | North, Kari E | Reiner, Alex P. | Keating, Brendan | Taylor, Kira C.
Human Molecular Genetics  2013;23(9):2498-2510.
Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBI's Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 20–80 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes ∼50 000 cosmopolitan tagged SNPs across ∼2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 × 10−6). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (β ± SE, 0.048 ± 0.008, P = 7.7 × 10−9) as was rs7302703-G in HOXC10 (β = 0.044 ± 0.008, P = 2.9 × 10−7) and rs936108-C in PEMT (β = 0.035 ± 0.007, P = 1.9 × 10−6). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 (β = 0.10 ± 0.02, P = 1.9 × 10−6) and rs1037575-A in ATBDB4 (β = 0.046 ± 0.01, P = 2.2 × 10−6), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.
PMCID: PMC3988452  PMID: 24345515
6.  Rationale and design of the Clarification of Optimal Anticoagulation through Genetics trial 
American heart journal  2013;166(3):435-441.
Current dosing practices for warfarin are empiric and result in the need for frequent dose changes as the international normalized ratio gets too high or too low. As a result, patients are put at increased risk for thromboembolism, bleeding, and premature discontinuation of anticoagulation therapy. Prior research has identified clinical and genetic factors that can alter warfarin dose requirements, but few randomized clinical trials have examined the utility of using clinical and genetic information to improve anticoagulation control or clinical outcomes among a large, diverse group of patients initiating warfarin.
The COAG trial is a multicenter, double-blind, randomized trial comparing 2 approaches to guiding warfarin therapy initiation: initiation of warfarin therapy based on algorithms using clinical information plus an individual's genotype using genes known to influence warfarin response (“genotype-guided dosing”) versus only clinical information (“clinical-guided dosing”) ( Identifier: NCT00839657).
The COAG trial design is described. The study hypothesis is that, among 1,022 enrolled patients, genotype-guided dosing relative to clinical-guided dosing during the initial dosing period will increase the percentage of time that patients spend in the therapeutic international normalized ratio range in the first 4 weeks of therapy.
The COAG will determine if genetic information provides added benefit above and beyond clinical information alone. (Am Heart J 2013;166:435-441.e2.)
PMCID: PMC4415273  PMID: 24016491
7.  Night Blood Pressure Responses to Atenolol and Hydrochlorothiazide in Black and White Patients With Essential Hypertension 
American Journal of Hypertension  2013;27(4):546-554.
Night blood pressure (BP) predicts patient outcomes. Variables associated with night BP response to antihypertensive agents have not been fully evaluated in essential hypertension.
We sought to measure night BP responses to hydrochlorothiazide (HCTZ), atenolol (ATEN), and combined therapy using ambulatory blood pressure (ABP) monitoring in 204 black and 281 white essential hypertensive patients. Initial therapy was randomized; HCTZ and ATEN once daily doses were doubled after 3 weeks and continued for 6 more weeks with the alternate medication added for combined therapy arms. ABP was measured at baseline and after completion of each drug. Night, day, and night/day BP ratio responses (treatment − baseline) were compared in race/sex subgroups.
Baseline night systolic BP and diastolic BP, and night/day ratios were greater in blacks than whites (P < 0.01, all comparisons). Night BP responses to ATEN were absent and night/day ratios increased significantly in blacks (P < 0.05). At the end of combined therapy, women, blacks, and those starting with HCTZ as opposed to ATEN had significantly greater night BP responses (P < 0.01). Variables that significantly associated with ATEN response differed from those that associated with HCTZ response and those that associated with night BP response differed from those that associated with day BP response.
In summary, after completion of HCTZ and ATEN therapy, women, blacks, and those who started with HCTZ had greater night BP responses. Reduced night BP response and increased night/day BP ratios occured with ATEN in blacks. Given the prognostic significance of night BP, strategies for optimizing night BP antihypertensive therapy should be considered.
PMCID: PMC3958600  PMID: 23886594
ambulatory blood pressure; atenolol; blood pressure; hydrochlorothiazide; hypertension; night/day ratio.
8.  Is a Diabetes-Linked Amino Acid Signature associated with Beta Blocker-Induced Impaired Fasting Glucose? 
The five amino acid (AA) signature including isoleucine (Ile), leucine (Leu), valine (Val), tyrosine (Tyr), and phenylalanine (Phe) has been associated with incident diabetes and insulin resistance. We investigated whether this same AA signature, single nucleotide polymorphisms (SNPs) in genes in their catabolic pathway, were associated with development of impaired fasting glucose (IFG) after atenolol treatment.
Methods and Results
Among 234 European American participants enrolled in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study and treated with atenolol for 9 weeks, we prospectively followed a nested cohort that had both metabolomics profiling and genotype data available, for the development of IFG. We assessed the association between baseline circulating levels of Ile, Leu, Val, Tyr and Phe, as well as SNPs in BCAT1 and PAH with development of IFG. All baseline AA levels were strongly associated with IFG development. Each increment in standard deviation of the five AAs was associated with the following odds ratio and 95% confidence interval for IFG based on fully adjusted model: Ile 2.29 (1.31–4.01), Leu 1.80 (1.10–2.96), Val 1.77 (1.07–2.92), Tyr 2.13 (1.20–3.78) and Phe 2.04 (1.16–3.59). The composite p value was 2x10−5. Those with PAH (rs2245360) AA genotype had the highest incidence of IFG (p for trend=0.0003).
Our data provide important insight into the metabolic and genetic mechanisms underlying atenolol associated adverse metabolic effects.
Clinical Trial Registration; Unique Identifier: NCT00246519
PMCID: PMC4050976  PMID: 24627569
amino acids; impaired glucose tolerance; pharmacogenetics; metabolomics; beta-blocker
9.  Clinical Pharmacogenetics Implementation 
Current challenges exist to widespread clinical implementation of genomic medicine and pharmacogenetics. The University of Florida (UF) Health Personalized Medicine Program (PMP) is a pharmacist-led, multidisciplinary initiative created in 2011 within the UF Clinical Translational Science Institute. Initial efforts focused on pharmacogenetics, with long-term goals to include expansion to disease-risk prediction and disease stratification. Herein we describe the processes for development of the program, the challenges that were encountered and the clinical acceptance by clinicians of the genomic medicine implementation. The initial clinical implementation of the UF PMP began in June 2012 and targeted clopidogrel use and the CYP2C19 genotype in patients undergoing left heart catheterization and percutaneous-coronary intervention (PCI). After 1 year, 1,097 patients undergoing left heart catheterization were genotyped preemptively, and 291 of those underwent subsequent PCI. Genotype results were reported to the medical record for 100% of genotyped patients. Eighty patients who underwent PCI had an actionable genotype, with drug therapy changes implemented in 56 individuals. Average turnaround time from blood draw to genotype result entry in the medical record was 3.5 business days. Seven different third party payors, including Medicare, reimbursed for the test during the first month of billing, with an 85% reimbursement rate for outpatient claims that were submitted in the first month. These data highlight multiple levels of success in clinical implementation of genomic medicine.
PMCID: PMC4076109  PMID: 24616371
pharmacogenetics; genomic medicine; implementation; CYP2C19; personalized medicine
10.  Baseline Predictors of Central Aortic Blood Pressure: A PEAR Substudy 
Elevated central systolic blood pressure (BP) increases the risk of cardiovascular events and appears superior to peripheral BP for long term risk prediction. The objective of this study was to identify demographic and clinical factors associated with central pressures in patients with uncomplicated hypertension.
Methods and Results
We prospectively examined peripheral BP, central aortic BP, and arterial wall properties and wave reflection in 57 subjects with uncomplicated essential hypertension in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) Study. Significant predictors of central SBP included height, smoking status, HR, and peripheral SBP, while central DBP was explained by peripheral DBP and HR. These variables accounted for nearly all of the variability in central SBP and central DBP (R2= 0.94 and R2= 0.98, respectively). Central pulse pressure variability was largely explained by gender, ex-smoking status, HR, peripheral SBP, and peripheral DBP (R2=0.94). Central augmented pressure had a direct relationship with smoking status, peripheral SBP, and duration of hypertension, whereas it was indirectly related to height, HR, peripheral DBP.
Easily obtainable demographic and clinical factors are associated with central pressures in essential hypertensive persons. These relationships should be considered in future studies to improve assessment of BP to reduce cardiovascular risk and mortality.
PMCID: PMC3959656  PMID: 24629400
Hypertension; arterial pressure; blood pressure; pulse wave analysis; vascular stiffness; applanation tonometry; cardiovascular disease
11.  Warfarin Pharmacogenetics: An Illustration of the Importance of Studies in Minority Populations 
Translation of pharmacogenetics to clinical practice is increasingly common. However, most data arise in people of European ancestry, so clinical translation in non-Europeans can be challenging. Depending on the population being assessed, a polymorphism’s effect can differ in magniture or be absent. Studies in minorities are therefore essential as they present opportunities for discovery that would be missed through European-only studies, and they ensure that all populations benefit from clinical pharmacogenetics.
PMCID: PMC4131541  PMID: 24548987
12.  A Novel Simple Method for Determining CYP2D6 Gene Copy Number and Identifying Allele(s) with Duplication/Multiplication 
PLoS ONE  2015;10(1):e0113808.
Cytochrome P450 2D6 (CYP2D6) gene duplication and multiplication can result in ultrarapid drug metabolism and therapeutic failure or excessive response in patients. Long range polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequencing are usually used for genotyping CYP2D6 duplication/multiplications and identification, but are labor intensive, time consuming, and costly.
We developed a simple allele quantification-based Pyrosequencing genotyping method that facilitates CYP2D6 copy number variation (CNV) genotyping while also identifying allele-specific CYP2D6 CNV in heterozygous samples. Most routine assays do not identify the allele containing a CNV. A total of 237 clinical and Coriell DNA samples with different known CYP2D6 gene copy numbers were genotyped for CYP2D6 *2, *3, *4, *6, *10, *17, *41 polymorphisms and CNV determination.
The CYP2D6 gene allele quantification/identification were determined simultaneously with CYP2D6*2, *3, *4, *6, *10, *17, *41 genotyping. We determined the exact CYP2D6 gene copy number, identified which allele had the duplication or multiplication, and assigned the correct phenotype and activity score for all samples.
Our method can efficiently identify the duplicated CYP2D6 allele in heterozygous samples, determine its copy number in a fraction of time compared to conventional methods and prevent incorrect ultrarapid phenotype calls. It also greatly reduces the cost, effort and time associated with CYP2D6 CNV genotyping.
PMCID: PMC4308104  PMID: 25625348
13.  Pharmacogenomics of Hypertension: A Genome‐Wide, Placebo‐Controlled Cross‐Over Study, Using Four Classes of Antihypertensive Drugs 
Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment.
Methods and Results
We conducted a genome‐wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double‐blind, placebo‐controlled cross‐over study where each subject received amlodipine, bisoprolol, hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single‐nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome‐wide significance (P<5×10−8); however, this could not be replicated in the PEAR Study using atenolol. In addition, 39 single‐nucleotide polymorphisms showed P values of 10−5 to 10−7. The 20 top‐associated single‐nucleotide polymorphisms were different for each antihypertensive drug. None of these top single‐nucleotide polymorphisms co‐localized with the panel of >40 genes identified in genome‐wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes.
These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase–mediated reactions in antihypertensive drug action.
PMCID: PMC4330076  PMID: 25622599
antihypertensive drug; association study; drug response; genome‐wide; hypertension
Pharmacogenetics and genomics  2013;23(12):697-705.
Thiazide diuretics have been associated with increased risk for new onset diabetes (NOD), but pharmacogenetic markers of thiazide-induced NOD are not well studied. Single nucleotide polymorphisms (SNPs) in the Transcription Factor 7-Like 2 gene (TCF7L2) represent the strongest and most reproducible genetic associations with diabetes. We investigated the association of tag SNPs in TCF7L2 with thiazide-induced NOD.
We identified cases that developed NOD and age, gender, and race/ethnicity-matched controls from the INternational VErapamil SR Trandolapril STudy (INVEST). INVEST compared cardiovascular outcomes between two antihypertensive treatment strategies in ethnically diverse patients with hypertension and coronary artery disease. We genotyped 101 TCF7L2 tag SNPs and used logistic regression to test for pharmacogenetic (SNP*hydrochlorothiazide treatment) interactions. Permuted interaction p values were corrected with the PACT test and adjusted for diabetes-related variables.
In INVEST whites, we observed three TCF7L2 SNPs with significant SNP*treatment interactions for NOD. The strongest pharmacogenetic interaction was observed for rs7917983 (synergy index 3.37 [95%CI 1.72–6.59], p=5.0×10−4, PACT =0.03), which was associated with increased NOD risk in hydrochlorothiazide-treated patients (OR 1.53 [1.04–2.25], p=0.03) and decreased NOD risk in non hydrochlorothiazide-treated patients (OR 0.48 [0.27–0.86], p=0.02). The TCF7L2 SNP rs4506565, previously associated with diabetes, showed a similar, significant pharmacogenetic association.
Our results suggest that hydrochlorothiazide treatment is an environmental risk factor that increases diabetes risk beyond that attributed to TCF7L2 variation in white, hypertensive patients. Further study and replication of our results is needed to confirm pharmacogenetic influences of TCF7L2 SNPs on thiazide-induced NOD.
PMCID: PMC3893755  PMID: 24128935
pharmacogenetics; TCF7L2; diabetes mellitus; hydrochlorothiazide
15.  Large‐Scale Gene‐Centric Analysis Identifies Polymorphisms for Resistant Hypertension 
Resistant hypertension (RHTN), defined by lack of blood pressure (BP) control despite treatment with at least 3 antihypertensive drugs, increases cardiovascular risk compared with controlled hypertension. Yet, there are few data on genetic variants associated with RHTN.
Methods and Results
We used a gene‐centric array containing ≈50 000 single‐nucleotide polymorphisms (SNPs) to identify polymorphisms associated with RHTN in hypertensive participants with coronary artery disease (CAD) from INVEST‐GENES (the INnternational VErapamil‐SR Trandolapril STudy—GENEtic Substudy). RHTN was defined as BP≥140/90 on 3 drugs, or any BP on 4 or more drugs. Logistic regression analysis was performed in European Americans (n=904) and Hispanics (n=837), using an additive model adjusted for age, gender, randomized treatment assignment, body mass index, principal components for ancestry, and other significant predictors of RHTN. Replication of the top SNP was conducted in 241 European American women from WISE (Women's Ischemia Syndrome Evaluation), where RHTN was defined similarly. To investigate the functional effect of rs12817819, mRNA expression was measured in whole blood. We found ATP2B1 rs12817819 associated with RHTN in both INVEST European Americans (P‐value=2.44×10−3, odds ratio=1.57 [1.17 to 2.01]) and INVEST Hispanics (P=7.69×10−4, odds ratio=1.76 [1.27 to 2.44]). A consistent trend was observed at rs12817819 in WISE, and the INVEST‐WISE meta‐analysis result reached chip‐wide significance (P=1.60×10−6, odds ratio=1.65 [1.36 to 1.95]). Expression analyses revealed significant differences in ATP2B1 expression by rs12817819 genotype.
The ATP2B1 rs12817819 A allele is associated with increased risk for RHTN in hypertensive participants with documented CAD or suspected ischemic heart disease.
Clinical Trial Registration
URL:; Unique identifiers: NCT00133692 (INVEST), NCT00000554 (WISE).
PMCID: PMC4338734  PMID: 25385345
genetics; hypertension; pharmacology; resistant hypertension
16.  The Effects of a Telehealth Coping Skills Intervention on Outcomes in Chronic Obstructive Pulmonary Disease: Primary Results from the INSPIRE-II Study 
Psychosomatic medicine  2014;76(8):581-592.
Chronic obstructive pulmonary disease (COPD) is associated with increased morbidity and mortality and reduced quality of life. Novel interventions are needed to improve outcomes in COPD patients. The present study assessed the effects of a telephone-based coping skills intervention on psychological and somatic quality of life and on the combined medical endpoint of COPD-related hospitalizations and all-cause mortality.
We conducted a dual-site, randomized clinical trial with assessments at baseline and after 16 weeks of treatment. The study population comprised 326 outpatients with COPD aged 38 to 81 years, randomized to Coping Skills training (CST) or to COPD Education (COPD-ED). Patients completed a battery of quality of life (QoL) instruments, pulmonary function tests, and functional measures and were followed for up to 4.4 years to assess medical outcomes.
The CST group exhibited greater improvements in psychological QoL compared to controls (P = .001), including less depression (Cohen’s d=0.22 [95%CI 0.08, 0.36]) and anxiety (d=0.17 [95%CI 0.02, 0.33]), and better overall mental health (d=0.17 [95%CI 0.03, 0.32]), emotional role functioning (d= 0.29 [95%CI 0.10, 0.48]), vitality (d= 0.27 [95%CI 0.11, 0.42]), and social functioning (d= 0.21 [95%CI 0.03, 0.38]). A significant baseline psychological QoL by Treatment group interaction revealed that CST with lower QoL at baseline achieved even greater improvements in psychological QoL compared to COPE-ED. CST participants also exhibited greater improvements in Somatic QoL (P = .042), including greater improvements in pulmonary QoL (d= 0.13 [95%CI 0.01, 0.24]), less fatigue (d= 0.34 [95%CI 0.18, 0.50]), and less shortness of breath (d= 0.11 [95%CI −0.01, 0.23]) and greater improvement in distance walked on the 6 Minute Walk Test (d= 0.09 [95%CI 0.01, 0.16]). However, there was no significant difference in risk of time to COPD-related hospitalization or all-cause mortality between CST (34 events) and COPD-ED (32 events) (P= 0.430).
A telehealth coping skills training intervention produced clinically meaningful improvements in quality of life and functional capacity, but no overall improvement in risk of COPD-related hospitalization and all-cause mortality.
Trial Registration Identifier NCT00736268
PMCID: PMC4197099  PMID: 25251888
COPD; stress; depression; coping skills; disease-management
17.  Stroke Genetics Network (SiGN) Study: Design and rationale for a genome-wide association study of ischemic stroke subtypes 
Background and Purpose
Meta-analyses of extant genome-wide data illustrate the need to focus on subtypes of ischemic stroke for gene discovery. The NINDS Stroke Genetics Network (SiGN) contributes substantially to meta-analyses that focus on specific subtypes of stroke.
The NINDS Stroke Genetics Network (SiGN) includes ischemic stroke cases from 24 Genetic Research Centers (GRCs), 13 from the US and 11 from Europe. Investigators harmonize ischemic stroke phenotyping using the web-based Causative Classification of Stroke (CCS) system, with data entered by trained and certified adjudicators at participating GRCs. Through the Center for Inherited Diseases Research (CIDR), SiGN plans to genotype 10,296 carefully phenotyped stroke cases using genome-wide SNP arrays, and add to these another 4,253 previously genotyped cases for a total of 14,549 cases. To maximize power for subtype analyses, the study allocates genotyping resources almost exclusively to cases. Publicly available studies provide most of the control genotypes. CIDR-generated genotypes and corresponding phenotypic data will be shared with the scientific community through dbGaP, and brain MRI studies will be centrally archived.
The SiGN consortium, with its emphasis on careful and standardized phenotyping of ischemic stroke and stroke subtypes, provides an unprecedented opportunity to uncover genetic determinants of ischemic stroke.
PMCID: PMC4056331  PMID: 24021684
ischemic stroke; genetics; genomics
18.  Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study 
Lancet  2013;382(9894):790-796.
VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans.
We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 −1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10−8 in the discovery cohort and p<0·0038 in the replication cohort.
The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10−8). This association was confirmed in the replication cohort (p=5·04×10−5); analysis of the two cohorts together produced a p value of 4·5×10−12. Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement).
A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population.
National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.
PMCID: PMC3759580  PMID: 23755828
19.  Loci influencing blood pressure identified using a cardiovascular gene-centric array 
Ganesh, Santhi K. | Tragante, Vinicius | Guo, Wei | Guo, Yiran | Lanktree, Matthew B. | Smith, Erin N. | Johnson, Toby | Castillo, Berta Almoguera | Barnard, John | Baumert, Jens | Chang, Yen-Pei Christy | Elbers, Clara C. | Farrall, Martin | Fischer, Mary E. | Franceschini, Nora | Gaunt, Tom R. | Gho, Johannes M.I.H. | Gieger, Christian | Gong, Yan | Isaacs, Aaron | Kleber, Marcus E. | Leach, Irene Mateo | McDonough, Caitrin W. | Meijs, Matthijs F.L. | Mellander, Olle | Molony, Cliona M. | Nolte, Ilja M. | Padmanabhan, Sandosh | Price, Tom S. | Rajagopalan, Ramakrishnan | Shaffer, Jonathan | Shah, Sonia | Shen, Haiqing | Soranzo, Nicole | van der Most, Peter J. | Van Iperen, Erik P.A. | Van Setten, Jessica | Vonk, Judith M. | Zhang, Li | Beitelshees, Amber L. | Berenson, Gerald S. | Bhatt, Deepak L. | Boer, Jolanda M.A. | Boerwinkle, Eric | Burkley, Ben | Burt, Amber | Chakravarti, Aravinda | Chen, Wei | Cooper-DeHoff, Rhonda M. | Curtis, Sean P. | Dreisbach, Albert | Duggan, David | Ehret, Georg B. | Fabsitz, Richard R. | Fornage, Myriam | Fox, Ervin | Furlong, Clement E. | Gansevoort, Ron T. | Hofker, Marten H. | Hovingh, G. Kees | Kirkland, Susan A. | Kottke-Marchant, Kandice | Kutlar, Abdullah | LaCroix, Andrea Z. | Langaee, Taimour Y. | Li, Yun R. | Lin, Honghuang | Liu, Kiang | Maiwald, Steffi | Malik, Rainer | Murugesan, Gurunathan | Newton-Cheh, Christopher | O'Connell, Jeffery R. | Onland-Moret, N. Charlotte | Ouwehand, Willem H. | Palmas, Walter | Penninx, Brenda W. | Pepine, Carl J. | Pettinger, Mary | Polak, Joseph F. | Ramachandran, Vasan S. | Ranchalis, Jane | Redline, Susan | Ridker, Paul M. | Rose, Lynda M. | Scharnag, Hubert | Schork, Nicholas J. | Shimbo, Daichi | Shuldiner, Alan R. | Srinivasan, Sathanur R. | Stolk, Ronald P. | Taylor, Herman A. | Thorand, Barbara | Trip, Mieke D. | van Duijn, Cornelia M. | Verschuren, W. Monique | Wijmenga, Cisca | Winkelmann, Bernhard R. | Wyatt, Sharon | Young, J. Hunter | Boehm, Bernhard O. | Caulfield, Mark J. | Chasman, Daniel I. | Davidson, Karina W. | Doevendans, Pieter A. | FitzGerald, Garret A. | Gums, John G. | Hakonarson, Hakon | Hillege, Hans L. | Illig, Thomas | Jarvik, Gail P. | Johnson, Julie A. | Kastelein, John J.P. | Koenig, Wolfgang | März, Winfried | Mitchell, Braxton D. | Murray, Sarah S. | Oldehinkel, Albertine J. | Rader, Daniel J. | Reilly, Muredach P. | Reiner, Alex P. | Schadt, Eric E. | Silverstein, Roy L. | Snieder, Harold | Stanton, Alice V. | Uitterlinden, André G. | van der Harst, Pim | van der Schouw, Yvonne T. | Samani, Nilesh J. | Johnson, Andrew D. | Munroe, Patricia B. | de Bakker, Paul I.W. | Zhu, Xiaofeng | Levy, Daniel | Keating, Brendan J. | Asselbergs, Folkert W.
Human Molecular Genetics  2013;22(16):3394-3395.
PMCID: PMC3888295
20.  Genomic Association Analysis of Common Variants Influencing Antihypertensive Response to Hydrochlorothiazide 
Hypertension  2013;62(2):391-397.
To identify novel genes influencing blood pressure response to thiazide diuretic therapy for hypertension, we conducted genome-wide association meta-analyses of ≈1.1 million single nucleotide polymorphisms in a combined sample of 424 European Americans with primary hypertension treated with hydrochlorothiazide from the Pharmacogenomic Evaluation of Antihypertensive Responses Study (N=228) and the Genetic Epidemiology of Responses to Antihypertensive Study (N=196). Polymorphisms associated with blood pressure response at p<10-5 were tested for replication of the associations in independent samples of hydrochlorothiazide-treated European hypertensives. The rs16960228 polymorphism in protein kinase C, alpha replicated for same-direction association with diastolic blood pressure response in the Nordic Diltiazem Study (N=420) and the Genetics of Drug Responsiveness in Essential Hypertension Study (N=206), and the combined four-study meta-analysis p-value achieved genome-wide significance (p=3.3 × 10-8). Systolic/diastolic blood pressure responses were consistently greater in carriers of the rs16960228 A allele than in GG homozygotes (4/4 mmHg greater) across study samples. The rs2273359 polymorphism in the GNAS-EDN3 region also replicated for same-direction association with systolic blood pressure response in the Nordic Diltiazem Study, and the combined three-study meta-analysis p-value approached genome-wide significance (p=5.5 × 10-8). The findings document clinically-important effects of genetic variation at novel loci on blood pressure response to a thiazide diuretic, which may be a basis for individualization of antihypertensive drug therapy and identification of new drug targets.
PMCID: PMC3780966  PMID: 23753411
Hypertension; high blood pressure; antihypertensive therapy/diuretics; hydrochlorothiazide; genomics; pharmacogenomics; protein kinase C
Hypertension  2013;62(1):48-54.
We sought to identify novel pharmacogenetic markers associated with cardiovascular outcomes in patients with hypertension on antihypertensive therapy. We genotyped a 1:4 case:control cohort (n=1345) on the Illumina HumanCVD Beadchip from the International Verapamil SR-Trandolapril Study, where participants were randomized to a β blocker strategy or a calcium channel blocker strategy. Genome-spanning SNP × treatment interaction analyses of non-synonymous SNPs were conducted in white and Hispanic race/ethnic groups. Top hits from whites were tested in Hispanics for consistency. A genetic risk score was constructed from the top three signals and tested in the Nordic Diltiazem study. SIGLEC12 rs16982743 and A1BG rs893184 had a significant interaction with treatment strategy for adverse cardiovascular outcomes (International Verapamil SR-Trandolapril Study whites and Hispanics combined interaction P=0.0038, and 0.0036, respectively). A genetic risk score including rs16982743, rs893184 and rs4525 in F5, was significantly associated with treatment-related adverse cardiovascular outcomes in whites and Hispanics from the International Verapamil SR-Trandolapril Study and in the Nordic Diltiazem study (meta-analysis interaction P=2.39×10−5). In patients with a genetic risk score of zero or 1, calcium channel blocker treatment was associated with lower risk (OR (95% CI) = 0.60 (0.42-0.86)), and in those with a genetic risk score of 2-3, calcium channel blocker treatment was associated with higher risk, OR (95% CI) = 1.31 (1.08-1.59)). These results suggest cardiovascular outcomes may differ based on SIGLEC12, A1BG, F5 genotypes and antihypertensive treatment strategy. These specific genetic associations and our risk score provide insight into a potential approach to personalized antihypertensive treatment selection.
PMCID: PMC3686553  PMID: 23690342
Pharmacogenomics; Hypertension; antihypertensive agents; cardiovascular outcomes; genetic variation; beta-blockers, calcium channel blockers
22.  A Pharmacogenetic versus a Clinical Algorithm for Warfarin Dosing 
The New England journal of medicine  2013;369(24):2283-2293.
The clinical utility of genotype-guided (pharmacogenetically based) dosing of warfarin has been tested only in small clinical trials or observational studies, with equivocal results.
We randomly assigned 1015 patients to receive doses of warfarin during the first 5 days of therapy that were determined according to a dosing algorithm that included both clinical variables and genotype data or to one that included clinical variables only. All patients and clinicians were unaware of the dose of warfarin during the first 4 weeks of therapy. The primary outcome was the percentage of time that the international normalized ratio (INR) was in the therapeutic range from day 4 or 5 through day 28 of therapy.
At 4 weeks, the mean percentage of time in the therapeutic range was 45.2% in the genotype-guided group and 45.4% in the clinically guided group (adjusted mean difference, [genotype-guided group minus clinically guided group], −0.2; 95% confidence interval, −3.4 to 3.1; P=0.91). There also was no significant between-group difference among patients with a predicted dose difference between the two algorithms of 1 mg per day or more. There was, however, a significant interaction between dosing strategy and race (P=0.003). Among black patients, the mean percentage of time in the therapeutic range was less in the genotype-guided group than in the clinically guided group. The rates of the combined outcome of any INR of 4 or more, major bleeding, or thromboembolism did not differ significantly according to dosing strategy.
Genotype-guided dosing of warfarin did not improve anticoagulation control during the first 4 weeks of therapy. (Funded by the National Heart, Lung, and Blood Institute and others; COAG number, NCT00839657.)
PMCID: PMC3942158  PMID: 24251361
23.  VKORC1 Asp36Tyr geographic distribution and its impact on warfarin dose requirements in Egyptians 
Thrombosis and haemostasis  2013;109(6):1045-1050.
The VKORC1 Asp36Tyr single nucleotide polymorphism (SNP) is one of the most promising predictors of high warfarin dose, but data on its population prevalence is incomplete. We determined the frequency of this SNP in participants from seven countries on four continents and investigated its effect on warfarin dose requirement. 1000 samples were analyzed to define the population prevalence of this SNP. Those samples included individuals from Egypt, Ghana, Sudan, Kenya, Saudi Arabia, Peru and African Americans from the United States. 206 Egyptian samples were then used to investigate the effect of this SNP on warfarin dose requirements. This SNP was most frequent among Kenyans and Sudanese, with a minor allele frequency (MAF) of 6% followed by Saudi Arabians and Egyptians with a MAF of 3% and 2.5%, respectively. It was not detected in West Africans, based on our data from Ghana, and a large cohort of African Americans. Egyptian carriers of the VKORC1 Tyr36 showed higher warfarin dose requirement (57.1±29.4 mg/week) than those with the Asp36Asp genotype (35.8±16.6 mg/week; P<0.03). In linear regression analysis, this SNP had the greatest effect size among the genetic factors (16.6 mg/week increase in dose per allele), and improved the warfarin dose variability explained in Egyptians (model R2 from 31% to 36.5%). The warfarin resistant VKORC1 Asp36Tyr appears to be confined to north-eastern Africa and nearby Middle-Eastern populations, but in those populations where it is present, it has a significant influence on warfarin dose requirement and the percent of warfarin dose variability that can be explained.
PMCID: PMC3712827  PMID: 23571513
Warfarin; Pharmacogenetics; VKORC1 Asp36Tyr; polymorphism; Egyptians
24.  Pharmacogenetics in clinical practice: how far have we come and where are we going? 
Pharmacogenomics  2013;14(7):835-843.
Recent years have seen great advances in our understanding of genetic contributors to drug response. Drug discovery and development around targeted genetic (somatic) mutations has led to a number of new drugs with genetic indications, particularly for the treatment of cancers. Our knowledge of genetic contributors to variable drug response for existing drugs has also expanded dramatically, such that the evidence now supports clinical use of genetic data to guide treatment in some situations, and across a variety of therapeutic areas. Clinical implementation of pharmacogenetics has seen substantial growth in recent years and groups are working to identify the barriers and best practices for pharmacogenetic-guided treatment. The advances and challenges in these areas are described and predictions about future use of genetics in drug therapy are discussed.
PMCID: PMC3697735  PMID: 23651030
clinical implementation; pharmacogenetics; pharmacogenomics
25.  Pregnancy Outcomes With Weight Gain Above or Below the 2009 Institute of Medicine Guidelines 
Obstetrics and gynecology  2013;121(5):969-975.
To evaluate pregnancy outcomes according to 2009 Institute of Medicine (IOM) gestational weight gain guidelines.
This study is a secondary analysis of a preeclampsia prevention trial among nulliparas carrying singletons. Odds ratios and 95% confidence intervals (adjusted for maternal age, race, smoking, and treatment group) were calculated based on total weight gain below or above the IOM guidelines, stratified by prepregnancy body mass index (BMI). The referent group was weight gain within the guidelines.
Of 8,293 pregnancies, 9.5% had weight gain below, 17.5% within, and 73% above IOM guidelines. With excess weight gain, all BMI categories had an increased risk of hypertensive disorders; normal weight and overweight women also had increased risk of cesarean delivery and infant birth weight at or above the 90th centile but a decreased risk of weight below the10th centile. There were no consistent associations with insufficient weight gain and adverse outcomes.
Excess weight gain was prevalent and associated with an increased risk of hypertensive disorders, cesarean delivery and large for gestational age infants..
PMCID: PMC3971915  PMID: 23635732

Results 1-25 (130)