PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (40)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Is Ticagrelor the Antiplatelet Therapy Panacea? 
doi:10.1161/CIRCGENETICS.110.958611
PMCID: PMC3052795  PMID: 21079054
clopidogrel; genetics; genotype; platelet function; ticagrelor; editorials
2.  Hydrochlorothiazide-induced hyperuricaemia in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study 
Journal of internal medicine  2014;276(5):486-497.
Objective
Elevations in uric acid (UA) and the associated hyperuricaemia are commonly observed secondary to treatment with thiazide diuretics. We sought to identify novel single-nucleotide polymorphisms (SNPs) associated with hydrochlorothiazide (HCTZ)-induced elevations in UA and hyperuricaemia.
Methods
A genome-wide association study of HCTZ-induced changes in UA was performed in Caucasian and African American participants from the Pharmacogenomic Evaluation of Antihypertensive Response (PEAR) study who were treated with HCTZ monotherapy. Suggestive SNPs were replicated in Caucasians and African Americans from the PEAR study who were treated with HCTZ add-on therapy. Replicated regions were followed up through expression and pathway analysis.
Results
Five unique gene regions were identified in African Americans (LUC7L2, ANKRD17/COX18, FTO, PADI4 and PARD3B) and one region was identified in Caucasians (GRIN3A). Increases in UA of up to 1.8 mg/dL were observed following HCTZ therapy in individuals homozygous for risk alleles, with heterozygotes displaying an intermediate phenotype. Several risk alleles were also associated with an increased risk of HCTZ-induced clinical hyperuricaemia. A composite risk score, constructed in African Americans using the ‘top’ SNP from each gene region, was strongly associated with HCTZ-induced UA elevations (P = 1.79×10−7) and explained 11% of the variability in UA response. Expression studies in RNA from whole blood revealed significant differences in expression of FTO by rs4784333 genotype. Pathway analysis showed putative connections between many of the genes identified through common microRNAs.
Conclusion
Several novel gene regions were associated with HCTZ-induced UA elevations in African Americans (LUC7L2, COX18/ANKRD17, FTO, PADI4 and PARD3B) and one region was associated with these elevations in Caucasians (GRIN3A).
doi:10.1111/joim.12215
PMCID: PMC4130802  PMID: 24612202
genome-wide association study; hydrochlorothiazide; hypertension; pharmacogenetics; polymorphism; uric acid
3.  Predictors for Glucose Change in Hypertensive Participants Following Short-term Treatment with Atenolol or Hydrochlorothiazide 
Pharmacotherapy  2014;34(11):1132-1140.
Study Objective
To develop and validate a predictive model for glucose change and risk for new-onset impaired fasting glucose in hypertensive participants following treatment with atenolol or hydrochlorothiazide (HCTZ).
Design
Randomized multicenter clinical trial.
Patients
A total of 735 white or African-American men and women with uncomplicated hypertension.
Measurements and Main Results
Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) is a randomized clinical trial to assess the genetic and nongenetic predictors of blood pressure response and adverse metabolic effects following treatment with atenolol or HCTZ. To develop and validate predictive models for glucose change, PEAR participants were randomly divided into a derivation cohort of 367 and a validation cohort of 368. Linear and logistic regression modeling were used to build models of drug-associated glucose change and impaired fasting glucose (IFG), respectively, in the derivation cohorts. These models were then evaluated in the validation cohorts. For glucose change after atenolol or HCTZ treatment, baseline glucose was a significant (p<0.0001) predictor, explaining 13% of the variability in glucose change after atenolol and 12% of the variability in glucose change after HCTZ. Baseline glucose was also the strongest and most consistent predictor (p<0.0001) for development of IFG after atenolol or HCTZ monotherapy. The area under the receiver operating curve was 0.77 for IFG after atenolol and 0.71 after HCTZ treatment, respectively.
Conclusion
Baseline glucose is the primary predictor of atenolol or HCTZ-associated glucose increase and development of IFG after treatment with either drug.
doi:10.1002/phar.1483
PMCID: PMC4227953  PMID: 25202885
β-Blockers; thiazide diuretics; hyperglycemia; atenolol; hydrochlorothiazide; impaired fasting glucose
4.  Night Blood Pressure Responses to Atenolol and Hydrochlorothiazide in Black and White Patients With Essential Hypertension 
American Journal of Hypertension  2013;27(4):546-554.
BACKGROUND
Night blood pressure (BP) predicts patient outcomes. Variables associated with night BP response to antihypertensive agents have not been fully evaluated in essential hypertension.
METHODS
We sought to measure night BP responses to hydrochlorothiazide (HCTZ), atenolol (ATEN), and combined therapy using ambulatory blood pressure (ABP) monitoring in 204 black and 281 white essential hypertensive patients. Initial therapy was randomized; HCTZ and ATEN once daily doses were doubled after 3 weeks and continued for 6 more weeks with the alternate medication added for combined therapy arms. ABP was measured at baseline and after completion of each drug. Night, day, and night/day BP ratio responses (treatment − baseline) were compared in race/sex subgroups.
RESULTS
Baseline night systolic BP and diastolic BP, and night/day ratios were greater in blacks than whites (P < 0.01, all comparisons). Night BP responses to ATEN were absent and night/day ratios increased significantly in blacks (P < 0.05). At the end of combined therapy, women, blacks, and those starting with HCTZ as opposed to ATEN had significantly greater night BP responses (P < 0.01). Variables that significantly associated with ATEN response differed from those that associated with HCTZ response and those that associated with night BP response differed from those that associated with day BP response.
CONCLUSIONS
In summary, after completion of HCTZ and ATEN therapy, women, blacks, and those who started with HCTZ had greater night BP responses. Reduced night BP response and increased night/day BP ratios occured with ATEN in blacks. Given the prognostic significance of night BP, strategies for optimizing night BP antihypertensive therapy should be considered.
CLINICAL TRIAL REGISTRATION
Clinicaltrials.gov identifier NCT00246519
doi:10.1093/ajh/hpt124
PMCID: PMC3958600  PMID: 23886594
ambulatory blood pressure; atenolol; blood pressure; hydrochlorothiazide; hypertension; night/day ratio.
5.  Is a Diabetes-Linked Amino Acid Signature associated with Beta Blocker-Induced Impaired Fasting Glucose? 
Background
The five amino acid (AA) signature including isoleucine (Ile), leucine (Leu), valine (Val), tyrosine (Tyr), and phenylalanine (Phe) has been associated with incident diabetes and insulin resistance. We investigated whether this same AA signature, single nucleotide polymorphisms (SNPs) in genes in their catabolic pathway, were associated with development of impaired fasting glucose (IFG) after atenolol treatment.
Methods and Results
Among 234 European American participants enrolled in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study and treated with atenolol for 9 weeks, we prospectively followed a nested cohort that had both metabolomics profiling and genotype data available, for the development of IFG. We assessed the association between baseline circulating levels of Ile, Leu, Val, Tyr and Phe, as well as SNPs in BCAT1 and PAH with development of IFG. All baseline AA levels were strongly associated with IFG development. Each increment in standard deviation of the five AAs was associated with the following odds ratio and 95% confidence interval for IFG based on fully adjusted model: Ile 2.29 (1.31–4.01), Leu 1.80 (1.10–2.96), Val 1.77 (1.07–2.92), Tyr 2.13 (1.20–3.78) and Phe 2.04 (1.16–3.59). The composite p value was 2x10−5. Those with PAH (rs2245360) AA genotype had the highest incidence of IFG (p for trend=0.0003).
Conclusions
Our data provide important insight into the metabolic and genetic mechanisms underlying atenolol associated adverse metabolic effects.
Clinical Trial Registration
clinicaltrials.gov; Unique Identifier: NCT00246519
doi:10.1161/CIRCGENETICS.113.000421
PMCID: PMC4050976  PMID: 24627569
amino acids; impaired glucose tolerance; pharmacogenetics; metabolomics; beta-blocker
6.  IMPLEMENTATION OF PHARMACOGENETICS: THE UNIVERSITY OF MARYLAND PERSONALIZED ANTI-PLATELET PHARMACOGENETICS PROGRAM 
Despite a substantial evidence base, implementation of pharmacogenetics into routine patient care has been slow due to a number of non-trivial practical barriers. We implemented a Personalized Anti-platelet Pharmacogenetics Program (PAP3) for cardiac catheterization patients at the University of Maryland Medical Center and the Baltimore Veterans Administration Medical Center Patients are offered CYP2C19 genetic testing, which is performed in our Clinical Laboratory Improvement Amendment (CLIA)-certified Translational Genomics Laboratory. Results are returned within five hours along with clinical decision support that includes interpretation of results and prescribing recommendations for anti-platelet therapy based on the Clinical Pharmacogenetics Implementation Consortium guidelines. Now with a working template for PAP3, implementation of other drug-gene pairs is in process. Lessons learned as described in this article may prove useful to other medical centers as they implement pharmacogenetics into patient care, a critical step in the pathway to personalized and genomic medicine.
doi:10.1002/ajmg.c.31396
PMCID: PMC4066997  PMID: 24616408
Pharmacogenomics; individualized medicine; personalized medicine; translational research; implementation science; CYP2C19; clopidogrel; anti-platelet pharmacogenetics
7.  Personalized antiplatelet and anticoagulation therapy: applications and significance of pharmacogenomics 
In recent years, substantial effort has been made to better understand the influence of genetic factors on the efficacy and safety of numerous medications. These investigations suggest that the use of pharmacogenetic data to inform physician decision-making has great potential to enhance patient care by reducing on-treatment clinical events, adverse drug reactions, and health care-related costs. In fact, integration of such information into the clinical setting may be particularly applicable for antiplatelet and anticoagulation therapeutics, given the increasing body of evidence implicating genetic variation in variable drug response. In this review, we summarize currently available pharmacogenetic information for the most commonly used antiplatelet (ie, clopidogrel and aspirin) and anticoagulation (ie, warfarin) medications. Furthermore, we highlight the currently known role of genetic variability in response to next-generation antiplatelet (prasugrel and ticagrelor) and anticoagulant (dabigatran) agents. While compelling evidence suggests that genetic variants are important determinants of antiplatelet and anticoagulation therapy response, significant barriers to clinical implementation of pharmacogenetic testing exist and are described herein. In addition, we briefly discuss development of new diagnostic targets and therapeutic strategies as well as implications for enhanced patient care. In conclusion, pharmacogenetic testing can provide important information to assist clinicians with prescribing the most personalized and effective antiplatelet and anticoagulation therapy. However, several factors may limit its usefulness and should be considered.
doi:10.2147/PGPM.S52900
PMCID: PMC4397717  PMID: 25897256
pharmacogenetics; clopidogrel; warfarin; anticoagulant; aspirin; precision medicine
8.  Purine Pathway Implicated in Mechanism of Resistance to Aspirin Therapy: Pharmacometabolomics-Informed-Pharmacogenomics 
Though aspirin is a well-established antiplatelet agent, the mechanisms of aspirin resistance remain poorly understood. Metabolomics allows for measurement of hundreds of small molecules in biological samples enabling detailed mapping of pathways involved in drug response. We defined the metabolic signature of aspirin exposure in subjects from the Heredity and Phenotype Intervention (HAPI) Heart Study. Many metabolites, including known aspirin catabolites, changed upon exposure to aspirin and pathway enrichment analysis identified purine metabolism as significantly affected by drug exposure. Further, purines were associated with aspirin response and poor responders had higher post-aspirin adenosine and inosine than good responders (N=76;p<4×10-3 both). Using our established “pharmacometabolomics-informs-pharmacogenomics” approach we identified genetic variants in adenosine kinase (ADK) associated with aspirin response. Combining metabolomics and genomics allowed for more comprehensive interrogation of mechanisms of variation in aspirin response - an important step toward personalized treatment approaches for cardiovascular disease.
doi:10.1038/clpt.2013.119
PMCID: PMC4001726  PMID: 23839601
9.  Loci influencing blood pressure identified using a cardiovascular gene-centric array 
Ganesh, Santhi K. | Tragante, Vinicius | Guo, Wei | Guo, Yiran | Lanktree, Matthew B. | Smith, Erin N. | Johnson, Toby | Castillo, Berta Almoguera | Barnard, John | Baumert, Jens | Chang, Yen-Pei Christy | Elbers, Clara C. | Farrall, Martin | Fischer, Mary E. | Franceschini, Nora | Gaunt, Tom R. | Gho, Johannes M.I.H. | Gieger, Christian | Gong, Yan | Isaacs, Aaron | Kleber, Marcus E. | Leach, Irene Mateo | McDonough, Caitrin W. | Meijs, Matthijs F.L. | Mellander, Olle | Molony, Cliona M. | Nolte, Ilja M. | Padmanabhan, Sandosh | Price, Tom S. | Rajagopalan, Ramakrishnan | Shaffer, Jonathan | Shah, Sonia | Shen, Haiqing | Soranzo, Nicole | van der Most, Peter J. | Van Iperen, Erik P.A. | Van Setten, Jessica | Vonk, Judith M. | Zhang, Li | Beitelshees, Amber L. | Berenson, Gerald S. | Bhatt, Deepak L. | Boer, Jolanda M.A. | Boerwinkle, Eric | Burkley, Ben | Burt, Amber | Chakravarti, Aravinda | Chen, Wei | Cooper-DeHoff, Rhonda M. | Curtis, Sean P. | Dreisbach, Albert | Duggan, David | Ehret, Georg B. | Fabsitz, Richard R. | Fornage, Myriam | Fox, Ervin | Furlong, Clement E. | Gansevoort, Ron T. | Hofker, Marten H. | Hovingh, G. Kees | Kirkland, Susan A. | Kottke-Marchant, Kandice | Kutlar, Abdullah | LaCroix, Andrea Z. | Langaee, Taimour Y. | Li, Yun R. | Lin, Honghuang | Liu, Kiang | Maiwald, Steffi | Malik, Rainer | Murugesan, Gurunathan | Newton-Cheh, Christopher | O'Connell, Jeffery R. | Onland-Moret, N. Charlotte | Ouwehand, Willem H. | Palmas, Walter | Penninx, Brenda W. | Pepine, Carl J. | Pettinger, Mary | Polak, Joseph F. | Ramachandran, Vasan S. | Ranchalis, Jane | Redline, Susan | Ridker, Paul M. | Rose, Lynda M. | Scharnag, Hubert | Schork, Nicholas J. | Shimbo, Daichi | Shuldiner, Alan R. | Srinivasan, Sathanur R. | Stolk, Ronald P. | Taylor, Herman A. | Thorand, Barbara | Trip, Mieke D. | van Duijn, Cornelia M. | Verschuren, W. Monique | Wijmenga, Cisca | Winkelmann, Bernhard R. | Wyatt, Sharon | Young, J. Hunter | Boehm, Bernhard O. | Caulfield, Mark J. | Chasman, Daniel I. | Davidson, Karina W. | Doevendans, Pieter A. | FitzGerald, Garret A. | Gums, John G. | Hakonarson, Hakon | Hillege, Hans L. | Illig, Thomas | Jarvik, Gail P. | Johnson, Julie A. | Kastelein, John J.P. | Koenig, Wolfgang | März, Winfried | Mitchell, Braxton D. | Murray, Sarah S. | Oldehinkel, Albertine J. | Rader, Daniel J. | Reilly, Muredach P. | Reiner, Alex P. | Schadt, Eric E. | Silverstein, Roy L. | Snieder, Harold | Stanton, Alice V. | Uitterlinden, André G. | van der Harst, Pim | van der Schouw, Yvonne T. | Samani, Nilesh J. | Johnson, Andrew D. | Munroe, Patricia B. | de Bakker, Paul I.W. | Zhu, Xiaofeng | Levy, Daniel | Keating, Brendan J. | Asselbergs, Folkert W.
Human Molecular Genetics  2013;22(16):3394-3395.
doi:10.1093/hmg/ddt177
PMCID: PMC3888295
10.  Genomic Association Analysis of Common Variants Influencing Antihypertensive Response to Hydrochlorothiazide 
Hypertension  2013;62(2):391-397.
To identify novel genes influencing blood pressure response to thiazide diuretic therapy for hypertension, we conducted genome-wide association meta-analyses of ≈1.1 million single nucleotide polymorphisms in a combined sample of 424 European Americans with primary hypertension treated with hydrochlorothiazide from the Pharmacogenomic Evaluation of Antihypertensive Responses Study (N=228) and the Genetic Epidemiology of Responses to Antihypertensive Study (N=196). Polymorphisms associated with blood pressure response at p<10-5 were tested for replication of the associations in independent samples of hydrochlorothiazide-treated European hypertensives. The rs16960228 polymorphism in protein kinase C, alpha replicated for same-direction association with diastolic blood pressure response in the Nordic Diltiazem Study (N=420) and the Genetics of Drug Responsiveness in Essential Hypertension Study (N=206), and the combined four-study meta-analysis p-value achieved genome-wide significance (p=3.3 × 10-8). Systolic/diastolic blood pressure responses were consistently greater in carriers of the rs16960228 A allele than in GG homozygotes (4/4 mmHg greater) across study samples. The rs2273359 polymorphism in the GNAS-EDN3 region also replicated for same-direction association with systolic blood pressure response in the Nordic Diltiazem Study, and the combined three-study meta-analysis p-value approached genome-wide significance (p=5.5 × 10-8). The findings document clinically-important effects of genetic variation at novel loci on blood pressure response to a thiazide diuretic, which may be a basis for individualization of antihypertensive drug therapy and identification of new drug targets.
doi:10.1161/HYPERTENSIONAHA.111.00436
PMCID: PMC3780966  PMID: 23753411
Hypertension; high blood pressure; antihypertensive therapy/diuretics; hydrochlorothiazide; genomics; pharmacogenomics; protein kinase C
11.  Loci influencing blood pressure identified using a cardiovascular gene-centric array 
Ganesh, Santhi K. | Tragante, Vinicius | Guo, Wei | Guo, Yiran | Lanktree, Matthew B. | Smith, Erin N. | Johnson, Toby | Castillo, Berta Almoguera | Barnard, John | Baumert, Jens | Chang, Yen-Pei Christy | Elbers, Clara C. | Farrall, Martin | Fischer, Mary E. | Franceschini, Nora | Gaunt, Tom R. | Gho, Johannes M.I.H. | Gieger, Christian | Gong, Yan | Isaacs, Aaron | Kleber, Marcus E. | Leach, Irene Mateo | McDonough, Caitrin W. | Meijs, Matthijs F.L. | Mellander, Olle | Molony, Cliona M. | Nolte, Ilja M. | Padmanabhan, Sandosh | Price, Tom S. | Rajagopalan, Ramakrishnan | Shaffer, Jonathan | Shah, Sonia | Shen, Haiqing | Soranzo, Nicole | van der Most, Peter J. | Van Iperen, Erik P.A. | Van Setten, Jessic A. | Vonk, Judith M. | Zhang, Li | Beitelshees, Amber L. | Berenson, Gerald S. | Bhatt, Deepak L. | Boer, Jolanda M.A. | Boerwinkle, Eric | Burkley, Ben | Burt, Amber | Chakravarti, Aravinda | Chen, Wei | Cooper-DeHoff, Rhonda M. | Curtis, Sean P. | Dreisbach, Albert | Duggan, David | Ehret, Georg B. | Fabsitz, Richard R. | Fornage, Myriam | Fox, Ervin | Furlong, Clement E. | Gansevoort, Ron T. | Hofker, Marten H. | Hovingh, G. Kees | Kirkland, Susan A. | Kottke-Marchant, Kandice | Kutlar, Abdullah | LaCroix, Andrea Z. | Langaee, Taimour Y. | Li, Yun R. | Lin, Honghuang | Liu, Kiang | Maiwald, Steffi | Malik, Rainer | Murugesan, Gurunathan | Newton-Cheh, Christopher | O'Connell, Jeffery R. | Onland-Moret, N. Charlotte | Ouwehand, Willem H. | Palmas, Walter | Penninx, Brenda W. | Pepine, Carl J. | Pettinger, Mary | Polak, Joseph F. | Ramachandran, Vasan S. | Ranchalis, Jane | Redline, Susan | Ridker, Paul M. | Rose, Lynda M. | Scharnag, Hubert | Schork, Nicholas J. | Shimbo, Daichi | Shuldiner, Alan R. | Srinivasan, Sathanur R. | Stolk, Ronald P. | Taylor, Herman A. | Thorand, Barbara | Trip, Mieke D. | van Duijn, Cornelia M. | Verschuren, W. Monique | Wijmenga, Cisca | Winkelmann, Bernhard R. | Wyatt, Sharon | Young, J. Hunter | Boehm, Bernhard O. | Caulfield, Mark J. | Chasman, Daniel I. | Davidson, Karina W. | Doevendans, Pieter A. | FitzGerald, Garret A. | Gums, John G. | Hakonarson, Hakon | Hillege, Hans L. | Illig, Thomas | Jarvik, Gail P. | Johnson, Julie A. | Kastelein, John J.P. | Koenig, Wolfgang | März, Winfried | Mitchell, Braxton D. | Murray, Sarah S. | Oldehinkel, Albertine J. | Rader, Daniel J. | Reilly, Muredach P. | Reiner, Alex P. | Schadt, Eric E. | Silverstein, Roy L. | Snieder, Harold | Stanton, Alice V. | Uitterlinden, André G. | van der Harst, Pim | van der Schouw, Yvonne T. | Samani, Nilesh J. | Johnson, Andrew D. | Munroe, Patricia B. | de Bakker, Paul I.W. | Zhu, Xiaofeng | Levy, Daniel | Keating, Brendan J. | Asselbergs, Folkert W.
Human Molecular Genetics  2013;22(8):1663-1678.
Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ∼50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ∼2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P < 2.4 × 10−6). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
doi:10.1093/hmg/dds555
PMCID: PMC3657476  PMID: 23303523
12.  Genetic Variation in PEAR1 is Associated with Platelet Aggregation and Cardiovascular Outcomes 
Background
Aspirin or dual antiplatelet therapy (DAPT) with aspirin and clopidogrel is standard therapy for patients at increased risk for cardiovascular events. However, the genetic determinants of variable response to aspirin (alone and in combination with clopidogrel) are not known.
Methods and Results
We measured ex-vivo platelet aggregation before and after DAPT in individuals (n=565) from the Pharmacogenomics of Antiplatelet Intervention (PAPI) Study and conducted a genome-wide association study (GWAS) of drug response. Significant findings were extended by examining genotype and cardiovascular outcomes in two independent aspirin-treated cohorts: 227 percutaneous coronary intervention (PCI) patients, and 1,000 patients of the International VErapamil SR/trandolapril Study (INVEST) GENEtic Substudy (INVEST-GENES). GWAS revealed a strong association between single nucleotide polymorphisms on chromosome 1q23 and post-DAPT platelet aggregation. Further genotyping revealed rs12041331 in the platelet endothelial aggregation receptor-1 (PEAR1) gene to be most strongly associated with DAPT response (P=7.66×10−9). In Caucasian and African American patients undergoing PCI, A-allele carriers of rs12041331 were more likely to experience a cardiovascular event or death compared to GG homozygotes (hazard ratio = 2.62, 95%CI 0.96-7.10, P=0.059 and hazard ratio = 3.97, 95%CI 1.10-14.31, P=0.035 respectively). In aspirin-treated INVEST-GENES patients, rs12041331 A-allele carriers had significantly increased risk of myocardial infarction compared to GG homozygotes (OR=2.03, 95%CI 1.01-4.09, P=0.048).
Conclusions
Common genetic variation in PEAR1 may be a determinant of platelet response and cardiovascular events in patients on aspirin, alone and in combination with clopidogrel.
Clinical Trial Registration Information
clinicaltrials.gov; Identifiers: NCT00799396 and NCT00370045
doi:10.1161/CIRCGENETICS.111.964627
PMCID: PMC3715320  PMID: 23392654
pharmacogenomics; platelets; percutaneous coronary intervention; PEAR1; CYP2C19
13.  Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics 
Journal of hypertension  2013;31(4):698-704.
Objective
Single-nucleotide polymorphisms (SNPs) in NEDD4L may influence the ability of the NEDD4L protein to reduce epithelial sodium channel expression. A variant in NEDD4L, rs4149601, was associated with antihypertensive response and cardiovascular outcomes during treatment with thiazide diuretics and β-blockers in a Swedish population. We sought to further evaluate associations between NEDD4L polymorphisms, blood pressure response and cardiovascular outcomes with thiazide diuretics and β-blockers.
Methods
Four SNPs, rs4149601, rs292449, rs1008899 and rs75982813, were genotyped in 767 patients from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) clinical trial and association was assessed with blood pressure response to hydrochlorothiazide and atenolol. One SNP, rs4149601, was also genotyped in 1345 patients from the International Verapmil SR Trandolapril Study (INVEST), and association was examined with adverse cardiovascular outcomes relative to hydrochlorothiazide treatment.
Results
Significant associations or trends were found between rs4149601, rs292449, rs75982813 and rs1008899 and decreases in blood pressure in whites on hydrochlorothiazide, and a significant association was observed with increasing copies of the GC rs4149601-rs292449 haplotype and greater blood pressure response to hydrochlorothiazide in whites (P = 0.0006 and 0.006, SBP and DBP, respectively). Significant associations were also seen with rs4149601 and an increased risk for adverse cardiovascular outcomes in whites not treated with hydrochlorothiazide [P = 0.022, odds ratio (95% confidence interval) = 10.65 (1.18–96.25)].
Conclusion
NEDD4L rs4149601, rs292449 and rs75982813 may be predictors for blood pressure response to hydrochlorothiazide in whites, and NEDD4L rs4149601 may be a predictor for adverse cardiovascular outcomes in whites not treated with hydrochlorothiazide.
doi:10.1097/HJH.0b013e32835e2a71
PMCID: PMC3756535  PMID: 23353631
epithelial sodium channel; hypertension; International Verapamil SR Trandolapril Study; neural precursor cell expressed developmentally down-regulated 4 like; Pharmacogenomic Evaluation of Antihypertensive Responses; pharmacogenetics
14.  Cost-Effectiveness of Cytochrome P450 2C19 Genotype Screening for Selection of Antiplatelet Therapy with Clopidogrel or Prasugrel 
Pharmacotherapy  2012;32(4):323-332.
Study Objective
To estimate the cost-effectiveness of genotype-guided selection of antiplatelet therapy compared with selecting clopidogrel or prasugrel irrespective of genotype.
Design
Decision model based on event occurrence in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction (TRITON-TIMI) 38.
Patients
Simulated cohort of patients with acute coronary syndrome scheduled to undergo percutaneous coronary intervention (PCI), consisting of three arms: those receiving genotype-guided antiplatelet therapy with clopidogrel or prasugrel, those receiving clopidogrel regardless of genotype, and those receiving prasugrel regardless of genotype.
Measurements and Main Results
All three arms of the model incorporated the probability that patients would experience a cardiovascular event (death from cardiovascular causes, nonfatal myocardial infarction, or non-fatal stroke), a bleeding event (major or minor bleeding), or no event while receiving antiplatelet therapy during the 15 months after the scheduled PCI. The cytochrome P450 (CYP) 2C19 genotype determined antiplatelet drug selection in the genotyping group. Cost-effectiveness was expressed as the incremental cost-effectiveness ratio (ICER) for each event avoided in the genotype-guided therapy arm versus the other two arms. Genotype-guided antiplatelet therapy was dominant, or more effective and less costly, when compared with the selection of clopidogrel (ICER –$6760 [95% confidence interval (CI) –$6720 to –$6790]) or prasugrel (ICER –$11,710 [95% CI –$11,480 to –$11,950]) for all patients with-out regard to genotype. Genotype-guided therapy that included generic clopidogrel was dominant to prasugrel for all patients (ICER –$27,160 [95% CI –$27,890 to –$26,420]). Cost savings were not evident when genotype-guided therapy that included generic clopidogrel was compared with generic clopidogrel for all patients (ICER $2300 [95% CI $2290 to $2320]).
Conclusion
Genotype-guided antiplatelet therapy selection may be more cost-effective and may provide more clinical value due to fewer adverse outcomes.
doi:10.1002/PHAR.1048
PMCID: PMC3883873  PMID: 22461122
clopidogrel; prasugrel; cytochrome P450 2C19; pharmacogenomics; cost-effectiveness
15.  Hypertension Susceptibility Loci and Blood Pressure Response to Antihypertensives – Results from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) Study 
Background
To date, 39 SNPs have been associated with blood pressure (BP) or hypertension (HTN) in genome-wide association studies (GWAS) in Caucasians. Our hypothesis is that the loci/SNPs associated with BP/HTN are also associated with BP response to antihypertensive drugs.
Methods and Results
We assessed the association of these loci with BP response to atenolol or hydrochlorothiazide monotherapy in 768 hypertensive participants in the Pharmacogenomics Responses of Antihypertensive Responses (PEAR) study. Linear regression analysis was performed in Caucasians for each SNP in an additive model adjusting for baseline BP, age, gender and principal components for ancestry. Genetic scores were constructed to include SNPs with nominal associations and empirical p values were determined by permutation test. Genotypes of 37 loci were obtained from Illumina 50K cardiovascular or Omni1M GWAS chips. In Caucasians, no SNPs reached Bonferroni-corrected alpha of 0.0014, six reached nominal significance (p<0.05) and 3 were associated with atenolol BP response at p < 0.01. The genetic score of the atenolol BP lowering alleles was associated with response to atenolol (p =3.3*10−6 for SBP; p=1.6*10−6 for DBP). The genetic score of the HCTZ BP lowering alleles was associated with response to HCTZ (p = 0.0006 for SBP; p = 0.0003 for DBP). Both risk score p values were < 0.01 based on the empirical distribution from the permutation test.
Conclusions
These findings suggest selected signals from hypertension GWAS may predict BP response to atenolol and HCTZ when assessed through risk scoring.
doi:10.1161/CIRCGENETICS.112.964080
PMCID: PMC3529147  PMID: 23087401
beta-blocker; diuretics; hypertension; pharmacogenetics; polymorphisms blood pressure
16.  Association of Chromosome 12 locus with antihypertensive response to hydrochlorothiazide may involve differential YEATS4 expression 
The pharmacogenomics journal  2012;13(3):257-263.
A recent genome-wide analysis discovered an association between a haplotype (from rs317689/rs315135/rs7297610) on Chromosome 12q15 and blood pressure response to hydrochlorothiazide in African-Americans. Our aim was to replicate this association and investigate possible functional mechanisms. We observed similar associations between this haplotype and hydrochlorothiazide response in an independent sample of 746 Caucasians and African-Americans randomized to hydrochlorothiazide or atenolol treatment. The haplotype association was driven by variation at rs7297610, where C/C genotypes were associated with greater mean (systolic: 3.4mmHg, P=0.0275; diastolic: 2.5mmHg, P=0.0196) responses to hydrochlorothiazide vs. T-allele carriers. Such an association was absent in atenolol-treated participants, supporting this as hydrochlorothiazide-specific. Expression analyses in hydrochlorothiazide-treated African-Americans showed differential leukocyte YEATS4 expression between rs7297610 genotype groups at baseline (P=0.024), and reduced expression in C/C genotypes (P=0.009), but not in T-carriers. Our data confirm previous genome-wide findings at 12q15 and suggest differential YEATS4 expression could underpin rs7297610-associated HCTZ response variability, which may have future implications for guiding thiazide treatment.
doi:10.1038/tpj.2012.4
PMCID: PMC3360116  PMID: 22350108
hydrochlorothiazide; hypertension; pharmacogenomics; blood pressure; YEATS4; diuretics
17.  G PROTEIN RECEPTOR KINASE 4 (GRK4) POLYMORPHISMS: BETA-BLOCKER PHARMACOGENETICS AND TREATMENT RELATED OUTCOMES IN HYPERTENSION 
Hypertension  2012;60(4):957-964.
G protein-coupled receptor kinases (GRKs) are important regulatory proteins for many G protein-coupled receptors, but little is known about GRK4 pharmacogenetics. We hypothesized three nonsynonymous GRK4 SNPs, R65L (rs2960306), A142V (rs1024323) and A486V (rs1801058) would be associated with blood pressure response to atenolol, but not hydrochlorothiazide, and would be associated with long term cardiovascular outcomes (all cause, death, nonfatal myocardial infarction, nonfatal stroke) in participants treated with an atenolol-based versus verapamil-SR-based antihypertensive strategy. GRK4 SNPs were genotyped in 768 hypertensive participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) trial. In Caucasians and African Americans, increasing copies of the variant 65L-142V haplotype were associated with significantly reduced atenolol-induced diastolic blood pressure lowering (−9.1 ± 6.8 vs −6.8 ± 7.1 vs −5.3 ± 6.4 mmHg in participants with 0, 1 and 2 copies of 65L-142V respectively; p=0.0088). 1460 participants with hypertension and coronary artery disease from the INternational VErapamil SR / Trandolapril STudy (INVEST) were genotyped and variant alleles of all three GRK4 SNPs were associated with increased risk for adverse cardiovascular outcomes in an additive fashion, with 486V homozygotes reaching statistical significance (Odds ratio 2.29 [1.48–3.55], p=0.0002). These effects on adverse cardiovascular outcomes were independent of antihypertensive treatment. These results suggest the presence of GRK4 variant alleles may be important determinants of blood pressure response to atenolol and risk for adverse cardiovascular events. The associations with GRK4 variant alleles were stronger in patients who were also ADRB1 389R-homozygotes, suggesting a potential interaction between these two genes.
doi:10.1161/HYPERTENSIONAHA.112.198721
PMCID: PMC3462355  PMID: 22949529
hypertension; GRK4; atenolol; beta-blocker; outcomes; ADRB1; pharmacogenetics
18.  Adrenergic-pathway Gene Variants Influence β-Blocker-related Outcomes after Acute Coronary Syndrome in a Race-specific Manner 
Objective
Overcoming racial differences in acute coronary syndrome (ACS) outcomes is a strategic goal for US healthcare. Genetic polymorphisms in the adrenergic pathway appear to explain some outcome differences by race in other cardiovascular diseases treated with β-adrenergic receptor-blockade (BB). Whether these genetic variants are associated with survival among ACS patients treated with BB, and if this differs by race, is unknown.
Background
BB after ACS is a measure of quality care, but the effectiveness across racial groups, is less clear.
Methods
A prospective cohort of 2,673 ACS patients (2,072 Caucasian; 601 African Americans) discharged on BB from 22 U.S. hospitals were followed for 2 years. Subjects were genotyped for polymorphisms in ADRB1, ADRB2, ADRA2C, and GRK5. We used proportional hazards regression to model the effect of genotype on mortality, stratified by race and adjusted for baseline factors.
Results
The overall 2-year mortality rate was 7.5% for Caucasians and 16.7% for African Americans. The prognosis associated with different genotypes in these BB-treated patients differed by race. In Caucasians, ADRA2C 322-325 deletion (D) carriers had significantly lower mortality as compared with homozygous individuals lacking the deletion (HR 0.46; CI 0.21, 0.99; p=0.047; race-by-genotype interaction p= 0.053). In African Americans, the ADRB2 16R allele was associated with significantly increased mortality (HR for RG vs. GG =2.10; CI 1.14, 3.86; RR vs. GG =2.65; CI 1.38, 5.08; p=0.013; race-by-genotype interaction p=0.096).
Conclusions
Adrenergic pathway polymorphisms are associated with mortality in ACS patients receiving BB in a race-specific manner. Understanding the mechanism by which different genes impact post-ACS mortality differently in Caucasian and African Americans may illuminate opportunities to improve BB therapy in these groups.
doi:10.1016/j.jacc.2012.02.051
PMCID: PMC3678950  PMID: 22703928
19.  Pharmacometabolomics Reveals Racial Differences in Response to Atenolol Treatment 
PLoS ONE  2013;8(3):e57639.
Antihypertensive drugs are among the most commonly prescribed drugs for chronic disease worldwide. The response to antihypertensive drugs varies substantially between individuals and important factors such as race that contribute to this heterogeneity are poorly understood. In this study we use metabolomics, a global biochemical approach to investigate biochemical changes induced by the beta-adrenergic receptor blocker atenolol in Caucasians and African Americans. Plasma from individuals treated with atenolol was collected at baseline (untreated) and after a 9 week treatment period and analyzed using a GC-TOF metabolomics platform. The metabolomic signature of atenolol exposure included saturated (palmitic), monounsaturated (oleic, palmitoleic) and polyunsaturated (arachidonic, linoleic) free fatty acids, which decreased in Caucasians after treatment but were not different in African Americans (p<0.0005, q<0.03). Similarly, the ketone body 3-hydroxybutyrate was significantly decreased in Caucasians by 33% (p<0.0001, q<0.0001) but was unchanged in African Americans. The contribution of genetic variation in genes that encode lipases to the racial differences in atenolol-induced changes in fatty acids was examined. SNP rs9652472 in LIPC was found to be associated with the change in oleic acid in Caucasians (p<0.0005) but not African Americans, whereas the PLA2G4C SNP rs7250148 associated with oleic acid change in African Americans (p<0.0001) but not Caucasians. Together, these data indicate that atenolol-induced changes in the metabolome are dependent on race and genotype. This study represents a first step of a pharmacometabolomic approach to phenotype patients with hypertension and gain mechanistic insights into racial variability in changes that occur with atenolol treatment, which may influence response to the drug.
doi:10.1371/journal.pone.0057639
PMCID: PMC3594230  PMID: 23536766
20.  Blood Pressure Responses and Metabolic Effects of Hydrochlorothiazide and Atenolol 
American Journal of Hypertension  2011;25(3):359-365.
BACKGROUND
Thiazides and β-blockers cause adverse metabolic effects (AMEs), but whether these effects share predictors with blood pressure (BP) response is unknown. We aimed to determine whether AMEs are correlated with BP response in uncomplicated hypertensives.
METHODS
In a multicenter, open-label, parallel-group trial, we enrolled 569 persons, aged 17–65, with random assignment to 9 weeks of daily hydrochlorothiazide (HCTZ) or atenolol monotherapy, followed by 9 weeks of add-on therapy with the alternate agent. Measurements included home BP, averaged over 1 week, weight and fasting levels of serum glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, and uric acid (UA) before and after monotherapy and after add-on therapy.
RESULTS
Increases in UA correlated with reductions in systolic BP (SBP) (r = −0.18; P = 0.003) and diastolic BP (DBP) (r = −0.20; P = 0.001) following HCTZ monotherapy and add-on therapy (r = −0.27 and r = −0.21, respectively; both P < 0.001). After adjustment for age, race, gender, and baseline body mass index (BMI), only the correlation between UA and DBP response became nonsignificant. Reductions in HDL correlated with systolic response following atenolol monotherapy (r = 0.18; P = 0.002) and with systolic and diastolic response following add-on therapy (r = 0.30 and r = 0.24, respectively; both P < 0.0001). These correlations remained significant after covariate adjustment. BP responses were not correlated with changes in glucose, LDL, triglycerides, or weight following either therapy.
CONCLUSIONS
BP response correlated with changes in UA following HCTZ therapy and HDL following atenolol therapy. No other significant correlations were observed between BP response and AMEs, suggesting that these effects generally do not share predictors. Patients should be monitored for AMEs, regardless of BP response.
doi:10.1038/ajh.2011.215
PMCID: PMC3288583  PMID: 22089105
thiazide diuretics; atenolol; β-blockers; blood pressure; hydrochlorothiazide; hypertension; metabolic effects
21.  Evolving research and stakeholder perspectives on pharmacogenomics 
doi:10.1001/jama.2011.1343
PMCID: PMC3559013  PMID: 21934059
pharmacogenomics; stakeholders; healthcare system
22.  CXCL5 polymorphisms are associated with variable blood pressure in cardiovascular disease-free adults 
Human Genomics  2012;6(1):9.
Objective
Leukocyte count has been associated with blood pressure, hypertension, and hypertensive complications. We hypothesized that polymorphisms in the CXCL5 gene, which encodes the neutrophilic chemokine ENA-78, are associated with blood pressure in cardiovascular disease (CVD)-free adults and that these polymorphisms are functional.
Methods and results
A total of 192 community-dwelling participants without CVD or risk equivalents were enrolled. Two CXCL5 polymorphisms (−156 G > C (rs352046) and 398 G > A (rs425535)) were tested for associations with blood pressure. Allele-specific mRNA expression in leukocytes was also measured to determine whether heterozygosity was associated with allelic expression imbalance. In −156 C variant carriers, systolic blood pressure (SBP) was 7 mmHg higher than in −156 G/G wild-type homozygotes (131 ± 17 vs. 124 ± 14 mmHg; P = 0.008). Similarly, diastolic blood pressure (DBP) was 4 mmHg higher in −156 C variant carriers (78 ± 11 vs. 74 ± 11 mmHg; P = 0.013). In multivariate analysis of SBP, age, sex, body mass index, and the −156 G > C polymorphism were identified as significant variables. Age, sex, and the −156 G > C SNP were further associated with DBP, along with white blood cells. Allelic expression imbalance and significantly higher circulating ENA-78 concentrations were noted for variant carriers.
Conclusion
CXCL5 gene polymorphisms are functional and associated with variable blood pressure in CVD-free individuals. The role of CXCL5 as a hypertension- and CVD-susceptibility gene should be further explored.
doi:10.1186/1479-7364-6-9
PMCID: PMC3505480  PMID: 23245743
CXCL5; ENA-78; Blood pressure; Hypertension; Leukocytes
23.  Chromosome 9p21 Haplotypes and Prognosis in Caucasian and African American Patients with Coronary Artery Disease 
Background
While numerous SNPs in Chromosome 9p21 have been associated with coronary artery disease (CAD) and incident MI in Caucasians, there are limited and conflicting reports on the association of this locus with prognosis in Caucasians with existing CAD and no reports in blacks or Hispanics. We investigated the hypothesis that 9p21 polymorphisms are associated with increased risk for adverse cardiovascular outcomes in patients with documented CAD.
Methods and Results
We studied the association of 155 chromosome 9p21 SNPs with adverse outcomes among hypertensive CAD patients of multiple races/ethnicities in INVEST GENES (the INternational VErapamil SR Trandolapril STudy GENetic Substudy, n= 1,460, n = 5,979 for 2 SNPs) and with replication testing of 4 SNPs in the INFORM (INvestigation oF Outcomes from acute coronary syndRoMe; n=714) study of acute coronary syndrome (ACS) patients. In INVEST, the haplotype comprised of the risk allele for the widely reported 9p21 SNPs was associated with better prognosis in Caucasians (OR, 95% CI: 0.72, 0.57–0.92, p = 0.0085) but not blacks (1.21, 0.68–1.24, p = 0.52) or Hispanics (0.96, 0.65–1.44, p=0.86). A less commonly reported LD block was associated with worse prognosis in INVEST among both Caucasians (OR=1.52 (1.20–1.93), p = 0.0006) and African Americans (OR = 4.11 (1.55–10.88), p = 0.004).
Conclusions
Our findings suggest previously reported chromosome 9p21 SNPs, which predict incident CAD, are not associated with higher risk for adverse outcomes in patients with established CAD. The less commonly reported LD block warrants further investigation.
doi:10.1161/CIRCGENETICS.110.959296
PMCID: PMC3101633  PMID: 21372283
chromosome 9p21; cardiovascular outcomes; genetic polymorphisms; INVEST; INFORM
24.  Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide 
Background
Nearly one-third of the United States adult population suffers from hypertension. Hydrochlorothiazide (HCTZ), one of the most commonly used medications to treat hypertension, has variable efficacy. The renal epithelial sodium channel (ENaC) provides a mechanism for fine-tuning sodium excretion, and is a major regulator of blood pressure homeostasis. DOT1L, MLLT3, SIRT1, and SGK1 encode genes in a pathway that controls methylation of the histone H3 globular domain at lysine 79 (H3K79), thereby modulating expression of the ENaCα subunit. This study aimed to determine the role of variation in these regulatory genes on blood pressure response to HCTZ, and secondarily, untreated blood pressure.
Methods
We investigated associations between genetic variations in this candidate pathway and HCTZ blood pressure response in two separate hypertensive cohorts (clinicaltrials.gov NCT00246519 and NCT00005520). In a secondary, exploratory analysis, we measured associations between these same genetic variations and untreated blood pressure. Associations were measured by linear regression, with only associations with P ≤ 0.01 in one cohort and replication by P ≤ 0.05 in the other cohort considered significant.
Results
In one cohort, a polymorphism in DOT1L (rs2269879) was strongly associated with greater systolic (P = 0.0002) and diastolic (P = 0.0016) blood pressure response to hydrochlorothiazide in Caucasians. However, this association was not replicated in the other cohort. When untreated blood pressure levels were analyzed, we found directionally similar associations between a polymorphism in MLLT3 (rs12350051) and greater untreated systolic (P < 0.01 in both cohorts) and diastolic (P < 0.05 in both cohorts) blood pressure levels in both cohorts. However, when further replication was attempted in a third hypertensive cohort and in smaller, normotensive samples, significant associations were not observed.
Conclusions
Our data suggest polymorphisms in DOT1L, MLLT3, SIRT1, and SGK1 are not likely associated with blood pressure response to HCTZ. However, a possibility exists that rs2269879 in DOT1L could be associated with HCTZ response in Caucasians. Additionally, exploratory analyses suggest rs12350051 in MLLT3 may be associated with untreated blood pressure in African-Americans. Replication efforts are needed to verify roles for these polymorphisms in human blood pressure regulation.
doi:10.1186/1479-5876-10-56
PMCID: PMC3320544  PMID: 22440088
Pharmacogenomics; Pharmacogenetics; hydrochlorothiazide; hypertension; blood pressure; DOT1L; SIRT1; MLLT3; SGK1; histone methylation
25.  Power to identify a genetic predictor of antihypertensive drug response using different methods to measure blood pressure response 
Background
To determine whether office, home, ambulatory daytime and nighttime blood pressure (BP) responses to antihypertensive drug therapy measure the same signal and which method provides greatest power to identify genetic predictors of BP response.
Methods
We analyzed office, home, ambulatory daytime and nighttime BP responses in hypertensive adults randomized to atenolol (N = 242) or hydrochlorothiazide (N = 257) in the Pharmacogenomic Evaluation of Antihypertensive Responses Study. Since different measured BP responses may have different predictors, we tested the "same signal" model by using linear regression methods to determine whether known predictors of BP response depend on the method of BP measurement. We estimated signal-to-noise ratios and compared power to identify a genetic polymorphism predicting BP response measured by each method separately and by weighted averages of multiple methods.
Results
After adjustment for pretreatment BP level, known predictors of BP response including plasma renin activity, race, and sex were independent of the method of BP measurement. Signal-to-noise ratios were more than 2-fold greater for home and ambulatory daytime BP responses than for office and ambulatory nighttime BP responses and up to 11-fold greater for weighted averages of all four methods. Power to identify a genetic polymorphism predicting BP response was directly related to the signal-to-noise ratio and, therefore, greatest with the weighted averages.
Conclusion
Since different methods of measuring BP response to antihypertensive drug therapy measure the same signal, weighted averages of the BP responses measured by multiple methods minimize measurement error and optimize power to identify genetic predictors of BP response.
doi:10.1186/1479-5876-10-47
PMCID: PMC3342146  PMID: 22413836
hypertension; blood pressure monitoring; antihypertensive drug therapy; beta-blocker; thiazide diuretic; plasma renin activity

Results 1-25 (40)