PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Analysis of structural diversity in wolf-like canids reveals post-domestication variants 
BMC Genomics  2014;15(1):465.
Background
Although a variety of genetic changes have been implicated in causing phenotypic differences among dogs, the role of copy number variants (CNVs) and their impact on phenotypic variation is still poorly understood. Further, very limited knowledge exists on structural variation in the gray wolf, the ancestor of the dog, or other closely related wild canids. Documenting CNVs variation in wild canids is essential to identify ancestral states and variation that may have appeared after domestication.
Results
In this work, we genotyped 1,611 dog CNVs in 23 wolf-like canids (4 purebred dogs, one dingo, 15 gray wolves, one red wolf, one coyote and one golden jackal) to identify CNVs that may have arisen after domestication. We have found an increase in GC-rich regions close to the breakpoints and around 1 kb away from them suggesting that some common motifs might be associated with the formation of CNVs. Among the CNV regions that showed the largest differentiation between dogs and wild canids we found 12 genes, nine of which are related to two known functions associated with dog domestication; growth (PDE4D, CRTC3 and NEB) and neurological function (PDE4D, EML5, ZNF500, SLC6A11, ELAVL2, RGS7 and CTSB).
Conclusions
Our results provide insight into the evolution of structural variation in canines, where recombination is not regulated by PRDM9 due to the inactivation of this gene. We also identified genes within the most differentiated CNV regions between dogs and wolves, which could reflect selection during the domestication process.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-465) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-465
PMCID: PMC4070573  PMID: 24923435
Domestication; CNV; Candidate genes; Dog and wolf
2.  Impact of Quaternary climatic changes and interspecific competition on the demographic history of a highly mobile generalist carnivore, the coyote 
Biology Letters  2012;8(4):644-647.
Recurrent cycles of climatic change during the Quaternary period have dramatically affected the population genetic structure of many species. We reconstruct the recent demographic history of the coyote (Canis latrans) through the use of Bayesian techniques to examine the effects of Late Quaternary climatic perturbations on the genetic structure of a highly mobile generalist species. Our analysis reveals a lack of phylogeographic structure throughout the range but past population size changes correlated with climatic changes. We conclude that even generalist carnivorous species are very susceptible to environmental changes associated with climatic perturbations. This effect may be enhanced in coyotes by interspecific competition with larger carnivores.
doi:10.1098/rsbl.2012.0162
PMCID: PMC3391477  PMID: 22491760
canid; Pleistocene; North America; mtDNA; Bayesian Skyline Plot; Canis latrans
4.  A Copy Number Variant at the KITLG Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit 
PLoS Genetics  2013;9(3):e1003409.
The domestic dog is a robust model for studying the genetics of complex disease susceptibility. The strategies used to develop and propagate modern breeds have resulted in an elevated risk for specific diseases in particular breeds. One example is that of Standard Poodles (STPOs), who have increased risk for squamous cell carcinoma of the digit (SCCD), a locally aggressive cancer that causes lytic bone lesions, sometimes with multiple toe recurrence. However, only STPOs of dark coat color are at high risk; light colored STPOs are almost entirely unaffected, suggesting that interactions between multiple pathways are necessary for oncogenesis. We performed a genome-wide association study (GWAS) on STPOs, comparing 31 SCCD cases to 34 unrelated black STPO controls. The peak SNP on canine chromosome 15 was statistically significant at the genome-wide level (Praw = 1.60×10−7; Pgenome = 0.0066). Additional mapping resolved the region to the KIT Ligand (KITLG) locus. Comparison of STPO cases to other at-risk breeds narrowed the locus to a 144.9-Kb region. Haplotype mapping among 84 STPO cases identified a minimal region of 28.3 Kb. A copy number variant (CNV) containing predicted enhancer elements was found to be strongly associated with SCCD in STPOs (P = 1.72×10−8). Light colored STPOs carry the CNV risk alleles at the same frequency as black STPOs, but are not susceptible to SCCD. A GWAS comparing 24 black and 24 light colored STPOs highlighted only the MC1R locus as significantly different between the two datasets, suggesting that a compensatory mutation within the MC1R locus likely protects light colored STPOs from disease. Our findings highlight a role for KITLG in SCCD susceptibility, as well as demonstrate that interactions between the KITLG and MC1R loci are potentially required for SCCD oncogenesis. These findings highlight how studies of breed-limited diseases are useful for disentangling multigene disorders.
Author Summary
Domesticated dogs offer a unique mechanism for disentangling complex genetic traits, such as cancer. Over 300 breeds exist worldwide, each selected for particular morphologic and behavioral traits. Unfortunately the breeding programs used to generate such diversity are associated with breed-specific increase in disease. Squamous cell carcinoma of the digit (SCCD) is a locally aggressive cancer that causes lytic bone lesions and, occasionally, death. Among the breeds with the highest risk is the Standard Poodle (STPO), where the disease is found only in dark-coated dogs. We show that the KITLG locus is highly associated with SCCD and that a 5.7-Kb copy number variant is likely causative for the disease when in an expanded form. Interestingly, light-colored STPO carry the putative causal variant at the same frequency as black STPOs, but are protected from SCCD. We show this is likely due to a compensatory mutation in the well-known coat color locus, MC1R. This work demonstrates the utility of dog breeds for understanding the genetic causes of complex diseases of interest to both human and animal health.
doi:10.1371/journal.pgen.1003409
PMCID: PMC3610924  PMID: 23555311
5.  Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog 
PLoS ONE  2013;8(3):e57754.
The origin of domestic dogs remains controversial, with genetic data indicating a separation between modern dogs and wolves in the Late Pleistocene. However, only a few dog-like fossils are found prior to the Last Glacial Maximum, and it is widely accepted that the dog domestication predates the beginning of agriculture about 10,000 years ago. In order to evaluate the genetic relationship of one of the oldest dogs, we have isolated ancient DNA from the recently described putative 33,000-year old Pleistocene dog from Altai and analysed 413 nucleotides of the mitochondrial control region. Our analyses reveal that the unique haplotype of the Altai dog is more closely related to modern dogs and prehistoric New World canids than it is to contemporary wolves. Further genetic analyses of ancient canids may reveal a more exact date and centre of domestication.
doi:10.1371/journal.pone.0057754
PMCID: PMC3590291  PMID: 23483925
6.  Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones 
Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.
doi:10.1098/rspb.2013.0423
PMCID: PMC3652462  PMID: 23595273
biodiversity; conservation planning; indicator species; reserve selection; surrogacy
8.  Response to Klütsch and Crapon de Caprona 
BMC Biology  2010;8:120.
This article is a response to Klütsch and Crapon de Caprona
See correspondence article http://www.biomedcentral.com/1741-7007/8/119 and our original research article http://www.biomedcentral.com/1741-7007/8/16.
doi:10.1186/1741-7007-8-120
PMCID: PMC2944130  PMID: 20825654
9.  Molecular and Evolutionary History of Melanism in North American Gray Wolves 
Science (New York, N.Y.)  2009;323(5919):1339-1343.
Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives.
doi:10.1126/science.1165448
PMCID: PMC2903542  PMID: 19197024
10.  Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes 
Science (New York, N.Y.)  2009;326(5949):150-153.
Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin–2, fibroblast growth factor–5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.
doi:10.1126/science.1177808
PMCID: PMC2897713  PMID: 19713490
11.  The IGF1 small dog haplotype is derived from Middle Eastern grey wolves 
BMC Biology  2010;8:16.
Background
A selective sweep containing the insulin-like growth factor 1 (IGF1) gene is associated with size variation in domestic dogs. Intron 2 of IGF1 contains a SINE element and single nucleotide polymorphism (SNP) found in all small dog breeds that is almost entirely absent from large breeds. In this study, we surveyed a large sample of grey wolf populations to better understand the ancestral pattern of variation at IGF1 with a particular focus on the distribution of the small dog haplotype and its relationship to the origin of the dog.
Results
We present DNA sequence data that confirms the absence of the derived small SNP allele in the intron 2 region of IGF1 in a large sample of grey wolves and further establishes the absence of a small dog associated SINE element in all wild canids and most large dog breeds. Grey wolf haplotypes from the Middle East have higher nucleotide diversity suggesting an origin there. Additionally, PCA and phylogenetic analyses suggests a closer kinship of the small domestic dog IGF1 haplotype with those from Middle Eastern grey wolves.
Conclusions
The absence of both the SINE element and SNP allele in grey wolves suggests that the mutation for small body size post-dates the domestication of dogs. However, because all small dogs possess these diagnostic mutations, the mutations likely arose early in the history of domestic dogs. Our results show that the small dog haplotype is closely related to those in Middle Eastern wolves and is consistent with an ancient origin of the small dog haplotype there. Thus, in concordance with past archeological studies, our molecular analysis is consistent with the early evolution of small size in dogs from the Middle East.
See associated opinion by Driscoll and Macdonald: http://jbiol.com/content/9/2/10
doi:10.1186/1741-7007-8-16
PMCID: PMC2837629  PMID: 20181231
13.  An Expressed Fgf4 Retrogene Is Associated with Breed-Defining Chondrodysplasia in Domestic Dogs 
Science (New York, N.Y.)  2009;325(5943):995-998.
Retrotransposition of processed mRNAs is a frequent source of novel sequence acquired during the evolution of genomes. The vast majority of retroposed gene copies are inactive pseudogenes that rapidly acquire mutations that disrupt the reading frame, while precious few are conserved to become new genes. Utilizing a multi-breed association analysis in the domestic dog, we demonstrate that a recently acquired fgf4 retrogene causes chondrodysplasia, a short-legged phenotype that defines several common dog breeds including the dachshund, corgi and basset hound. The discovery that a single evolutionary event underlies a breed-defining phenotype for 19 diverse dog breeds demonstrates the importance of unique mutational events in constraining and directing phenotypic diversity in the domestic dog.
doi:10.1126/science.1173275
PMCID: PMC2748762  PMID: 19608863
14.  Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization 
Evolutionary Applications  2009;3(1):1-16.
To better understand how environment shapes phenotypic and genetic variation, we explore the relationship between environmental variables across Ecuador and genetic and morphological variation in the wedge-billed woodcreeper (Glyphorynchus spirurus), a common Neotropical rainforest bird species. Generalized dissimilarity models show that variation in amplified fragment length polymorphism markers was strongly associated with environmental variables on both sides of the Andes, but could also partially be explained by geographic distance on the western side of the Andes. Tarsus, wing, tail, and bill lengths and bill depth were well explained by environmental variables on the western side of the Andes, whereas only tarsus length was well explained on the eastern side. Regions that comprise the highest rates of genetic and phenotypic change occur along steep elevation gradients in the Andes. Such environmental gradients are likely to be particularly important for maximizing adaptive diversity to minimize the impacts of climate change. Using a framework for conservation prioritization based on preserving ecological and evolutionary processes, we found little overlap between currently protected areas in Ecuador and regions we predicted to be important in maximizing adaptive variation.
doi:10.1111/j.1752-4571.2009.00093.x
PMCID: PMC3352455
Andes; biodiversity; conservation prioritization; environmental gradients; evolutionary process; generalized dissimilarity modeling; landscape genetics; niche modeling
15.  A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs 
Science (New York, N.Y.)  2007;316(5821):112-115.
The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.
doi:10.1126/science.1137045
PMCID: PMC2789551  PMID: 17412960
16.  Native Great Lakes wolves were not restored 
Biology Letters  2007;4(1):95-98.
Wolves from the Great Lakes area were historically decimated due to habitat loss and predator control programmes. Under the protection of the US Endangered Species Act, the population has rebounded to approximately 3000 individuals. We show that the pre-recovery population was dominated by mitochondrial DNA haplotypes from an endemic American wolf referred to here as the Great Lakes wolf. In contrast, the recent population is admixed, and probably derives also from the grey wolf (Canis lupus) of Old World origin and the coyote (Canis latrans). Consequently, the pre-recovery population has not been restored, casting doubt on delisting actions.
doi:10.1098/rsbl.2007.0354
PMCID: PMC2412915  PMID: 17956840
hybridization; coyote; introgression; aDNA
17.  Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco 
Pleistocene glacial cycles are thought to have played a major role in the diversification of temperate and boreal species of North American birds. Given that coalescence times between sister taxa typically range from 0.1 to 2.0 Myr, it has been assumed that diversification occurred as populations were isolated in refugia over long periods of time, probably spanning one to several full glacial cycles. In contrast, the rapid postglacial range expansions and recolonization of northern latitudes following glacial maxima have received less attention as potential promoters of speciation. Here we report a case of extremely rapid diversification in the songbird genus Junco as a result of a single continent-wide range expansion within the last 10 000 years. Molecular data from 264 juncos sampled throughout their range reveal that as the yellow-eyed junco (Junco phaeonotus) of Mesoamerica expanded northward following the last glacial maximum, it speciated into the dark-eyed junco (Junco hyemalis), which subsequently diversified itself into at least five markedly distinct and geographically structured morphotypes in the USA and Canada. Patterns of low genetic structure and diversity in mitochondrial DNA and amplified fragment length polymorphism loci found in dark-eyed juncos relative to Mesoamerican yellow-eyed juncos provide support for the hypothesis of an expansion from the south, followed by rapid diversification in the north. These results underscore the role of postglacial expansions in promoting diversification and speciation through a mechanism that represents an alternative to traditional modes of Pleistocene speciation.
doi:10.1098/rspb.2007.0852
PMCID: PMC2279216  PMID: 17725978
speciation; postglacial expansion; phylogeography; Holocene; Junco
18.  A comparison of variation between a MHC pseudogene and microsatellite loci of the little greenbul (Andropadus virens) 
Background
We investigated genetic variation of a major histcompatibility complex (MHC) pseudogene (Anvi-DAB1) in the little greenbul (Andropadus virens) from four localities in Cameroon and one in Ivory Coast, West Africa. Previous microsatellite and mitochondrial DNA analyses had revealed little or no genetic differentiation among Cameroon localities but significant differentiation between localities in Cameroon and Ivory Coast.
Results
Levels of genetic variation, heterozygosity, and allelic diversity were high for the MHC pseudogene in Cameroon. Nucleotide diversity of the MHC pseudogene in Cameroon and Ivory Coast was comparable to levels observed in other avian species that have been studied for variation in nuclear genes. An excess of rare variants for the MHC pseudogene was found in the Cameroon population, but this excess was not statistically significant. Pairwise measures of population differentiation revealed high divergence between Cameroon and Ivory Coast for microsatellites and the MHC locus, although for the latter distance measures were much higher than the comparable microsatellite distances.
Conclusion
We provide the first ever comparison of variation in a putative MHC pseudogene to variation in neutral loci in a passerine bird. Our results are consistence with the action of neutral processes on the pseudogene and suggest they can provide an independent perspective on demographic history and population substructure.
doi:10.1186/1471-2148-5-47
PMCID: PMC1249561  PMID: 16159389
19.  Genome Sequencing Highlights the Dynamic Early History of Dogs 
PLoS Genetics  2014;10(1):e1004016.
To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.
Author Summary
The process of dog domestication is still poorly understood, largely because no studies thus far have leveraged deeply sequenced whole genomes from wolves and dogs to simultaneously evaluate support for the proposed source regions: East Asia, the Middle East, and Europe. To investigate dog origins, we sequence three wolf genomes from the putative centers of origin, two basal dog breeds (Basenji and Dingo), and a golden jackal as an outgroup. We find that none of the wolf lineages from the hypothesized domestication centers is supported as the source lineage for dogs, and that dogs and wolves diverged 11,000–16,000 years ago in a process involving extensive admixture and that was followed by a bottleneck in wolves. In addition, we investigate the amylase (AMY2B) gene family expansion in dogs, which has recently been suggested as being critical to domestication in response to increased dietary starch. We find standing variation in AMY2B copy number in wolves and show that some breeds, such as Dingo and Husky, lack the AMY2B expansion. This suggests that, at the beginning of the domestication process, dogs may have been characterized by a more carnivorous diet than their modern day counterparts, a diet held in common with early hunter-gatherers.
doi:10.1371/journal.pgen.1004016
PMCID: PMC3894170  PMID: 24453982
20.  Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication 
Nature  2010;464(7290):898-902.
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1,2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
doi:10.1038/nature08837
PMCID: PMC3494089  PMID: 20237475
21.  Variation of BMP3 Contributes to Dog Breed Skull Diversity 
PLoS Genetics  2012;8(8):e1002849.
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait.
Author Summary
As a result of selective breeding practices, modern dogs display a multitude of head shapes. Breeds such as the Pug and Bulldog popularize one of these morphologies, termed “brachycephaly.” A short, upward-pointing snout, a massive and rounded head, and an underbite typify brachycephalic breeds. Here, we have coupled the phenotypes collected from museum skulls with the genotypes collected from dogs and identified five regions of the dog genome that are associated with canine brachycephaly. Fine mapping at one of these regions revealed a causal mutation in the gene BMP3. Bmp3's role in regulating cranial development is evolutionarily ancient, as zebrafish require its function to generate a normal craniofacial morphology. Our data begin to expose the genetic mechanisms unknowingly employed by breeders to create and diversify the cranial shape of dogs.
doi:10.1371/journal.pgen.1002849
PMCID: PMC3410846  PMID: 22876193
22.  Mapping evolutionary process: a multi-taxa approach to conservation prioritization 
Evolutionary Applications  2011;4(2):397-413.
Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization.
doi:10.1111/j.1752-4571.2010.00172.x
PMCID: PMC3352560
Andes; conservation prioritization; ecological modeling; Ecuador; evolutionary process; generalized dissimilarity modeling; landscape genetics; species distribution
24.  A Simple Genetic Architecture Underlies Morphological Variation in Dogs 
PLoS Biology  2010;8(8):e1000451.
The largest genetic study to date of morphology in domestic dogs identifies genes controlling nearly 100 morphological traits and identifies important trends in phenotypic variation within this species.
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.
Author Summary
Dogs offer a unique system for the study of genes controlling morphology. DNA from 915 dogs from 80 domestic breeds, as well as a set of feral dogs, was tested at over 60,000 points of variation and the dataset analyzed using novel methods to find loci regulating body size, head shape, leg length, ear position, and a host of other traits. Because each dog breed has undergone strong selection by breeders to have a particular appearance, there is a strong footprint of selection in regions of the genome that are important for controlling traits that define each breed. These analyses identified new regions of the genome, or loci, that are important in controlling body size and shape. Our results, which feature the largest number of domestic dogs studied at such a high level of genetic detail, demonstrate the power of the dog as a model for finding genes that control the body plan of mammals. Further, we show that the remarkable diversity of form in the dog, in contrast to some other species studied to date, appears to have a simple genetic basis dominated by genes of major effect.
doi:10.1371/journal.pbio.1000451
PMCID: PMC2919785  PMID: 20711490
25.  Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation 
BMC Biology  2008;6:10.
Background
Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve.
Results
We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.
Conclusion
Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.
doi:10.1186/1741-7007-6-10
PMCID: PMC2276185  PMID: 18275614

Results 1-25 (26)