PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (101)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer 
PLoS Genetics  2014;10(2):e1004129.
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10−14). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Author Summary
Genome-wide association studies (GWAS) have identified numerous low penetrance disease susceptibility variants, yet few causal alleles have been unambiguously identified. The underlying causal variants are expected to be predominantly common; however synthetic associations with rare, higher penetrance variants have been hypothesised though not yet observed. Here, we report detection of a novel common, low penetrance prostate cancer association at the HOXB locus at ch17q and show that this signal can actually be attributed to a previously identified rare, moderate penetrance coding variant (G84E) in HOXB13. This study therefore provides the first experimental evidence for the existence of synthetic associations in cancer and shows that where GWAS signals arise through this phenomenon, risk predictions derived using the tag SNP would substantially underestimate the relative risk conferred and overestimate the number of carriers of the causal variant. Synthetic associations at GWAS signals could therefore account for a proportion of the missing heritability of complex diseases.
doi:10.1371/journal.pgen.1004129
PMCID: PMC3923678  PMID: 24550738
2.  Genome Sequencing Highlights the Dynamic Early History of Dogs 
PLoS Genetics  2014;10(1):e1004016.
To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.
Author Summary
The process of dog domestication is still poorly understood, largely because no studies thus far have leveraged deeply sequenced whole genomes from wolves and dogs to simultaneously evaluate support for the proposed source regions: East Asia, the Middle East, and Europe. To investigate dog origins, we sequence three wolf genomes from the putative centers of origin, two basal dog breeds (Basenji and Dingo), and a golden jackal as an outgroup. We find that none of the wolf lineages from the hypothesized domestication centers is supported as the source lineage for dogs, and that dogs and wolves diverged 11,000–16,000 years ago in a process involving extensive admixture and that was followed by a bottleneck in wolves. In addition, we investigate the amylase (AMY2B) gene family expansion in dogs, which has recently been suggested as being critical to domestication in response to increased dietary starch. We find standing variation in AMY2B copy number in wolves and show that some breeds, such as Dingo and Husky, lack the AMY2B expansion. This suggests that, at the beginning of the domestication process, dogs may have been characterized by a more carnivorous diet than their modern day counterparts, a diet held in common with early hunter-gatherers.
doi:10.1371/journal.pgen.1004016
PMCID: PMC3894170  PMID: 24453982
3.  A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease 
Amin Al Olama, Ali | Kote-Jarai, Zsofia | Schumacher, Fredrick R. | Wiklund, Fredrik | Berndt, Sonja I. | Benlloch, Sara | Giles, Graham G. | Severi, Gianluca | Neal, David E. | Hamdy, Freddie C. | Donovan, Jenny L. | Hunter, David J. | Henderson, Brian E. | Thun, Michael J. | Gaziano, Michael | Giovannucci, Edward L. | Siddiq, Afshan | Travis, Ruth C. | Cox, David G. | Canzian, Federico | Riboli, Elio | Key, Timothy J. | Andriole, Gerald | Albanes, Demetrius | Hayes, Richard B. | Schleutker, Johanna | Auvinen, Anssi | Tammela, Teuvo L.J. | Weischer, Maren | Stanford, Janet L. | Ostrander, Elaine A. | Cybulski, Cezary | Lubinski, Jan | Thibodeau, Stephen N. | Schaid, Daniel J. | Sorensen, Karina D. | Batra, Jyotsna | Clements, Judith A. | Chambers, Suzanne | Aitken, Joanne | Gardiner, Robert A. | Maier, Christiane | Vogel, Walther | Dörk, Thilo | Brenner, Hermann | Habuchi, Tomonori | Ingles, Sue | John, Esther M. | Dickinson, Joanne L. | Cannon-Albright, Lisa | Teixeira, Manuel R. | Kaneva, Radka | Zhang, Hong-Wei | Lu, Yong-Jie | Park, Jong Y. | Cooney, Kathleen A. | Muir, Kenneth R. | Leongamornlert, Daniel A. | Saunders, Edward | Tymrakiewicz, Malgorzata | Mahmud, Nadiya | Guy, Michelle | Govindasami, Koveela | O'Brien, Lynne T. | Wilkinson, Rosemary A. | Hall, Amanda L. | Sawyer, Emma J. | Dadaev, Tokhir | Morrison, Jonathan | Dearnaley, David P. | Horwich, Alan | Huddart, Robert A. | Khoo, Vincent S. | Parker, Christopher C. | Van As, Nicholas | Woodhouse, Christopher J. | Thompson, Alan | Dudderidge, Tim | Ogden, Chris | Cooper, Colin S. | Lophatonanon, Artitaya | Southey, Melissa C. | Hopper, John L. | English, Dallas | Virtamo, Jarmo | Le Marchand, Loic | Campa, Daniele | Kaaks, Rudolf | Lindstrom, Sara | Diver, W. Ryan | Gapstur, Susan | Yeager, Meredith | Cox, Angela | Stern, Mariana C. | Corral, Roman | Aly, Markus | Isaacs, William | Adolfsson, Jan | Xu, Jianfeng | Zheng, S. Lilly | Wahlfors, Tiina | Taari, Kimmo | Kujala, Paula | Klarskov, Peter | Nordestgaard, Børge G. | Røder, M. Andreas | Frikke-Schmidt, Ruth | Bojesen, Stig E. | FitzGerald, Liesel M. | Kolb, Suzanne | Kwon, Erika M. | Karyadi, Danielle M. | Orntoft, Torben Falck | Borre, Michael | Rinckleb, Antje | Luedeke, Manuel | Herkommer, Kathleen | Meyer, Andreas | Serth, Jürgen | Marthick, James R. | Patterson, Briony | Wokolorczyk, Dominika | Spurdle, Amanda | Lose, Felicity | McDonnell, Shannon K. | Joshi, Amit D. | Shahabi, Ahva | Pinto, Pedro | Santos, Joana | Ray, Ana | Sellers, Thomas A. | Lin, Hui-Yi | Stephenson, Robert A. | Teerlink, Craig | Muller, Heiko | Rothenbacher, Dietrich | Tsuchiya, Norihiko | Narita, Shintaro | Cao, Guang-Wen | Slavov, Chavdar | Mitev, Vanio | Chanock, Stephen | Gronberg, Henrik | Haiman, Christopher A. | Kraft, Peter | Easton, Douglas F. | Eeles, Rosalind A.
Human Molecular Genetics  2012;22(2):408-415.
Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS including 5953 cases of aggressive PrCa and 11 463 controls (men without PrCa). We computed association tests for approximately 2.6 million SNPs and followed up the most significant SNPs by genotyping 49 121 samples in 29 studies through the international PRACTICAL and BPC3 consortia. We not only confirmed the association of a PrCa susceptibility locus, rs11672691 on chromosome 19, but also showed an association with aggressive PrCa [odds ratio = 1.12 (95% confidence interval 1.03–1.21), P = 1.4 × 10−8]. This report describes a genetic variant which is associated with aggressive PrCa, which is a type of PrCa associated with a poorer prognosis.
doi:10.1093/hmg/dds425
PMCID: PMC3526158  PMID: 23065704
4.  Investigation of the relationship between prostate cancer and MSMB and NCOA4 genetic variants and protein expression 
Human mutation  2012;34(1):149-156.
Two genome-wide association studies (GWAS) identified the β-microseminoprotein (MSMB) promoter SNP, rs10993994:C>T, as significantly associated with prostate cancer (PC) risk. Follow-up studies demonstrate that the variant allele directly affects expression of the MSMB encoded protein, PSP94, and also suggest that it affects mRNA expression levels of an adjacent gene, NCOA4, which is involved in androgen receptor transactivation. In a population-based study of 1,323 cases and 1,268 age-matched controls, we found the NCOA4 SNP, rs7350420:T>C, was associated with a 15% reduction in PC risk, but the association was not significant after adjustment for the rs10993994:C>T genotype. Tumor tissue microarrays of 519 radical prostatectomy patients were used to measure PSP94 and NCOA4 protein expression. Taken together, these data confirm that the rs10993994:C>T variant allele is associated with decreased PSP94 expression, and the association is stronger in tumor compared to normal prostate tissue. No association was observed between rs10993994:C>T and NCOA4 expression, and only moderate associations were seen between two NCOA4 SNPs, rs10761618:T>C and rs7085433:G>A, and NCOA4 protein expression. These data indicate that the increase in PC risk associated with rs10993994:C>T is likely mediated by the variant’s effect on PSP94 expression; however this effect does not extend to NCOA4 in the data presented here.
doi:10.1002/humu.22176
PMCID: PMC3532957  PMID: 22887727
Prostate cancer; MSMB; PSP94; NCOA4; protein expression; genetic variants
5.  Association of Variants in Estrogen-Related Pathway Genes with Prostate Cancer Risk 
The Prostate  2012;73(1):1-10.
Background
Through mediation of estrogen receptors, estradiol has been shown to have both carcinogenic and anti-carcinogenic effects on the prostate. We performed a population-based case-control study to investigate variants in estrogen-related genes ESR1, ESR2, CYP19A1, CYP1A1, and CYP1B1 and the potential association with risk of prostate cancer.
Materials and Methods
We evaluated prostate cancer risk conferred by 73 single nucleotide polymorphisms in 1,304 incident prostate cancer cases and 1,266 age-matched controls. Analysis included stratification by clinical features and assessment of environmental modifiers.
Results
There was evidence of altered risk of developing prostate cancer for variants in ESR1, CYP1A1, and CYP1B1, however, only CYP1B1 rs1056836 retained significance after adjustment for multiple comparisons. An association with risk for more aggressive prostate cancer was observed for variants in ESR1, ESR2, and CYP19A1, but none was significant after adjustment for multiple comparisons. There was no effect modification by obesity.
Conclusions
Germline genetic variation of these estrogen pathway genes may contribute to risk of prostate cancer. Additional studies to validate these results and examine the functional consequence of validated variants are warranted.
doi:10.1002/pros.22534
PMCID: PMC3544476  PMID: 22549291
Estrogen Receptor; Cytochrome P450; Aromatase; Prostate Neoplasm; Polymorphism
6.  The Monoamine Oxidase A Gene Promoter Repeat and Prostate Cancer Risk 
The Prostate  2012;72(15):1622-1627.
Background
Amine catabolism by Monoamine Oxidase A (MAOA) contributes to oxidative stress, which plays a role in prostate cancer (PCa) development and progression. An upstream variable-number tandem repeat (uVNTR) in the MAOA promoter influences gene expression and activity, and may thereby affect PCa susceptibility.
Methods
Caucasian (n=2,572) men from two population-based case-control studies of PCa were genotyped for the MAOA-VNTR. Logistic regression was used to assess PCa risk in relation to genotype.
Results
Common alleles of the MAOA-VNTR were not associated with the relative risk of PCa, nor did the relationship differ by clinical features of the disease. The rare 5-copy variant (frequency: 0.5% in cases; 1.8% in controls), however, was associated with a reduced PCa risk (odds ratio, OR=0.30, 95% CI 0.13–0.71).
Conclusions
A rare polymorphism of the MAOA promoter previously shown to confer low expression was associated with a reduced risk of developing prostate cancer. This novel finding awaits confirmation in other study populations.
doi:10.1002/pros.22515
PMCID: PMC3532925  PMID: 22473857
MAOA; polymorphism; prostate cancer
7.  So many doggone traits: mapping genetics of multiple phenotypes in the domestic dog 
Human Molecular Genetics  2012;21(R1):R52-R57.
The worldwide dog population is fragmented into >350 domestic breeds. Breeds share a common ancestor, the gray wolf. The intense artificial selection imposed by humans to develop breeds with particular behaviors and phenotypic traits has occurred primarily in the last 200–300 years. As a result, the number of genes controlling the major differences in body size, leg length, head shape, etc. that define each dog is small, and genetically tractable. This is in comparison to many human complex traits where small amounts of variance are controlled by literally hundreds of genes. We have been interested in disentangling the genetic mechanisms controlling breed-defining morphological traits in the domestic dog. The structure of the dog population, comprised large numbers of pure breeding populations, makes this task surprisingly doable. In this review, we summarize recent work on the genetics of body size, leg length and skull shape, while setting the stage for tackling other traits. It is our expectation that these results will contribute to a better understanding of mammalian developmental processes overall.
doi:10.1093/hmg/dds323
PMCID: PMC3459646  PMID: 22878052
8.  Androgen metabolism and JAK/STAT pathway genes and prostate cancer risk 
Cancer Epidemiology  2012;36(4):347-353.
Background
Prostate cancer (PC) is the most frequently diagnosed solid tumor in U.S. men. Genome-wide association studies (GWAS) have identified over 40 risk-associated single nucleotide polymorphisms (SNPs), including variants in androgen pathway genes (e.g., KLK3 and AR). Androgens are important in PC and genes involved in this pathway are therefore candidates for conferring susceptibility to PC.
Methods
In this hypothesis-testing study, we evaluated PC risk in association with SNPs in 22 candidate genes involved in androgen metabolism or interactions with the androgen receptor (AR). A total of 187 SNPs were genotyped in 1,458 cases and 1,351 age-matched controls from a population-based study. PC risk was estimated using adjusted unconditional logistic regression and multinomial regression models.
Results
Single SNP analyses showed evidence (p<0.05) for associations with 14 SNPs in 9 genes: NKX3.1, HSD17B3, AKR1C3, SULT2A1, CYP17A1, KLK3, JAK2, NCOA4 and STAT3. The most significant result was observed for rs2253502 in HSD17B3 (odds ratio, OR=0.57, 95% CI: 0.39–0.84). In addition, five SNPs in four genes (CYP17A1, HSD17B4, NCOA4, and SULT2A1) were associated with more aggressive disease (p<0.01).
Conclusions
Our results replicate previously reported associations for SNPs in CYP17A1, HSD17B3, ARK1C3, NKX3.1, NCOA4 and KLK3. In addition, novel associations were observed for SNPs in JAK2, HSD17B4, and SULT2A1. These results will require replication in larger studies.
doi:10.1016/j.canep.2012.04.002
PMCID: PMC3392409  PMID: 22542949
Androgen pathway; JAK2; HSD17B3; prostate cancer; polymorphisms; genetic susceptibility
9.  Sensitive Quantification of Mosaicism Using High Density SNP Arrays and the Cumulative Distribution Function 
Molecular Genetics and Metabolism  2011;105(4):665-671.
Medicine is rapidly applying exome and genome sequencing to the diagnosis and management of human disease. Somatic mosaicism, however, is not readily detectable by these means, and yet it accounts for a significant portion of undiagnosed disease. We present a rapid and sensitive method, the Continuous Distribution Function as applied to single nucleotide polymorphism (SNP) array data, to quantify somatic mosaicism throughout the genome. We also demonstrate application of the method to novel diseases and mechanisms.
doi:10.1016/j.ymgme.2011.12.015
PMCID: PMC3309164  PMID: 22277120
10.  A Copy Number Variant at the KITLG Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit 
PLoS Genetics  2013;9(3):e1003409.
The domestic dog is a robust model for studying the genetics of complex disease susceptibility. The strategies used to develop and propagate modern breeds have resulted in an elevated risk for specific diseases in particular breeds. One example is that of Standard Poodles (STPOs), who have increased risk for squamous cell carcinoma of the digit (SCCD), a locally aggressive cancer that causes lytic bone lesions, sometimes with multiple toe recurrence. However, only STPOs of dark coat color are at high risk; light colored STPOs are almost entirely unaffected, suggesting that interactions between multiple pathways are necessary for oncogenesis. We performed a genome-wide association study (GWAS) on STPOs, comparing 31 SCCD cases to 34 unrelated black STPO controls. The peak SNP on canine chromosome 15 was statistically significant at the genome-wide level (Praw = 1.60×10−7; Pgenome = 0.0066). Additional mapping resolved the region to the KIT Ligand (KITLG) locus. Comparison of STPO cases to other at-risk breeds narrowed the locus to a 144.9-Kb region. Haplotype mapping among 84 STPO cases identified a minimal region of 28.3 Kb. A copy number variant (CNV) containing predicted enhancer elements was found to be strongly associated with SCCD in STPOs (P = 1.72×10−8). Light colored STPOs carry the CNV risk alleles at the same frequency as black STPOs, but are not susceptible to SCCD. A GWAS comparing 24 black and 24 light colored STPOs highlighted only the MC1R locus as significantly different between the two datasets, suggesting that a compensatory mutation within the MC1R locus likely protects light colored STPOs from disease. Our findings highlight a role for KITLG in SCCD susceptibility, as well as demonstrate that interactions between the KITLG and MC1R loci are potentially required for SCCD oncogenesis. These findings highlight how studies of breed-limited diseases are useful for disentangling multigene disorders.
Author Summary
Domesticated dogs offer a unique mechanism for disentangling complex genetic traits, such as cancer. Over 300 breeds exist worldwide, each selected for particular morphologic and behavioral traits. Unfortunately the breeding programs used to generate such diversity are associated with breed-specific increase in disease. Squamous cell carcinoma of the digit (SCCD) is a locally aggressive cancer that causes lytic bone lesions and, occasionally, death. Among the breeds with the highest risk is the Standard Poodle (STPO), where the disease is found only in dark-coated dogs. We show that the KITLG locus is highly associated with SCCD and that a 5.7-Kb copy number variant is likely causative for the disease when in an expanded form. Interestingly, light-colored STPO carry the putative causal variant at the same frequency as black STPOs, but are protected from SCCD. We show this is likely due to a compensatory mutation in the well-known coat color locus, MC1R. This work demonstrates the utility of dog breeds for understanding the genetic causes of complex diseases of interest to both human and animal health.
doi:10.1371/journal.pgen.1003409
PMCID: PMC3610924  PMID: 23555311
11.  Chromosomes 4 and 8 Implicated in a Genome Wide SNP Linkage Scan of 762 Prostate Cancer Families Collected by the ICPCG 
The Prostate  2011;72(4):410-426.
Background
In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer remains largely incomplete. In a previous microsatellite-based linkage scan of 1233 prostate cancer (PC) families, we identified suggestive evidence for linkage (i.e. LOD≥1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members.
Methods
In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome-wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 ICPCG groups.
Results
Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37 cM interval on 4q13-25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD scores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC, an important gene in PC biology.
Conclusions
These results will be useful in prioritizing future susceptibility gene discovery efforts in this common cancer.
doi:10.1002/pros.21443
PMCID: PMC3568777  PMID: 21748754
12.  Global Patterns of Prostate Cancer Incidence, Aggressiveness, and Mortality in Men of African Descent 
Prostate Cancer  2013;2013:560857.
Prostate cancer (CaP) is the leading cancer among men of African descent in the USA, Caribbean, and Sub-Saharan Africa (SSA). The estimated number of CaP deaths in SSA during 2008 was more than five times that among African Americans and is expected to double in Africa by 2030. We summarize publicly available CaP data and collected data from the men of African descent and Carcinoma of the Prostate (MADCaP) Consortium and the African Caribbean Cancer Consortium (AC3) to evaluate CaP incidence and mortality in men of African descent worldwide. CaP incidence and mortality are highest in men of African descent in the USA and the Caribbean. Tumor stage and grade were highest in SSA. We report a higher proportion of T1 stage prostate tumors in countries with greater percent gross domestic product spent on health care and physicians per 100,000 persons. We also observed that regions with a higher proportion of advanced tumors reported lower mortality rates. This finding suggests that CaP is underdiagnosed and/or underreported in SSA men. Nonetheless, CaP incidence and mortality represent a significant public health problem in men of African descent around the world.
doi:10.1155/2013/560857
PMCID: PMC3583061  PMID: 23476788
13.  Finding Cardiovascular Disease Genes in the Dog 
Recent advances in canine genomics are changing the landscape of veterinary biology, and by default, veterinary medicine. No longer are clinicians locked into traditional methods of diagnoses and therapy. Rather major advances in canine genetics and genomics from the past five years are now changing the way the veterinarian of the 21st century practices medicine.
First, the availability of a dense genome map gives canine genetics a much needed foothold in comparative medicine, allowing advances made in human and mouse genetics to be applied to companion animals. Second, the recently released 7.5x whole genome sequence of the dog is facilitating the identification of hereditary disease genes. Finally, development of genetic tools for rapid screening of families and populations at risk for inherited disease means that the cost of identifying and testing for disease loci will significantly decrease in coming years.
Out of these advances will come major changes in companion animal diagnostics and therapy. Clinicians will be able to offer their clients genetic testing and counseling for a myriad of disorders. Such advances are certain to generate healthier and more long lived dogs, improving quality of life for owner and pet alike. The clinician of the 21st century, therefore, faces incredible opportunities as well as challenges in the management of genetic disease. In this review we summarize recent findings in canine genomics and discuss their application to the study of canine cardiac health.
doi:10.1016/j.jvc.2006.04.002
PMCID: PMC3559124  PMID: 19083345
inherited disease; genome; canine; cardiac; heart
14.  Molecular Genetic Analysis of a Putative Domestic Dog Clone 
Nature  2006;440(7081):E1-E2.
doi:10.1038/nature04685
PMCID: PMC3559127  PMID: 16525421
15.  The MTAP-CDKN2A Locus Confers Susceptibility to a Naturally Occurring Canine Cancer 
Background
Advantages offered by canine population substructure, combined with clinical presentations similar to human disorders, makes the dog an attractive system for studies of cancer genetics. Cancers that have been difficult to study in human families or populations are of particular interest. Histiocytic sarcoma is a rare and poorly understood neoplasm in humans that occurs in 15–25% of Bernese Mountain Dogs (BMD).
Methods
Genomic DNA was collected from affected and unaffected BMD in North America (NA) and Europe. Both independent and combined genome wide association studies (GWAS) were used to identify cancer-associated loci. Fine mapping and sequencing narrowed the primary locus to a single gene region.
Results
Both populations shared the same primary locus, which features a single haplotype spanning MTAP and part of CDKN2A and is present in 96% of affected BMD. The haplotype is within the region homologous to human chromosome 9p21, which has been implicated in several types of cancer.
Conclusions
We present the first GWAS for HS in any species. The data identify an associated haplotype in the highly cited tumor suppressor locus near CDKN2A. These data demonstrate the power of studying distinctive malignancies in highly predisposed dog breeds.
Impact
Here, we establish a naturally-occurring model of cancer susceptibility due to CDKN2 dysregulation, thus providing insight regarding this cancer-associated, complex, and poorly understood genomic region.
doi:10.1158/1055-9965.EPI-12-0190-T
PMCID: PMC3392365  PMID: 22623710
Genome Wide Association Study; Dogs; p16; Cancer; Histiocytic sarcoma
16.  Family history of breast cancer in relation to tumor characteristics and mortality in a population--based study of young women with invasive breast cancer 
BACKGROUND
Inherited predisposition may be associated with distinctive breast cancer phenotypes and/or mortality. Past studies have had inconsistent results and little is known about the contributions of screening and treatment.
METHODS
Within a population-based cohort of 1260 women diagnosed with invasive breast cancer before age 46, we assessed how family history of breast cancer relates to mortality and tumor characteristics. Analyses were repeated excluding BRCA1/BRCA2 carriers. Medical records were reviewed for treatment history and tumors were centrally reviewed and tested. Cox proportional hazard modeling was used to assess the risk of dying in relation to family history; logistic regression was used to assess the association of family history to tumor characteristics.
RESULTS
Compared to women with no family history, women with first-degree family history of breast cancer had a 40% reduction (95% CI 0.5–0.8) in the risk of dying. Mortality in women with only a second-degree family history was similar to those with no family history. The risk of dying was further reduced in those with a greater number of affected relatives. These relationships did not appear to be attributable to differences in screening, detection method, or treatment. Tumors in women with a first-degree family history had generally more favorable prognostic profiles.
CONCLUSION
Our findings suggest that breast cancer patients with a first-degree family history, compared to their counterparts without such a profile, may have a better prognosis.
IMPACT
These findings support the need for future research directed at replicating these results and identifying factors underlying this possible relationship.
doi:10.1158/1055-9965.EPI-11-0781
PMCID: PMC3242640  PMID: 21960690
breast cancer; family history; BRCA1; BRCA2; tumor markers; survival
17.  The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs 
Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs.
doi:10.1007/s00335-012-9417-z
PMCID: PMC3511640  PMID: 22903739
18.  Subcutaneous 5-Azacitidine Treatment of Naturally Occurring Canine Urothelial Carcinoma: A Novel Epigenetic Approach to Human Urothelial Carcinoma Drug Development 
The Journal of urology  2011;187(1):302-309.
Purpose
We determined the efficacy, biological activity, pharmacokinetics and safety of the hypomethylating agent 5-azacitidine (Celgene Corp., Summit, New Jersey) in dogs with naturally occurring invasive urothelial carcinoma.
Materials and Methods
We performed a preclinical phase I trial in dogs with naturally occurring invasive urothelial carcinoma to examine once daily subcutaneous administration of 5-azacitidine in 28-day cycles at doses of 0.10 to 0.30 mg/kg per day according to 2 dose schedules, including days 1 to 5 (28-day cohort) or days 1 to 5 and 15 to 19 (14-day cohort). Clinical efficacy was assessed by serial cystosonography, radiography and cystoscopy. Urinary 5-azacitidine pharmacokinetic analysis was also done. Pretreatment and posttreatment peripheral blood mononuclear cell and invasive urothelial carcinoma DNA, respectively, was analyzed for global and gene specific [CDKN2A (p14ARF)] methylation changes.
Results
Enrolled in the study were 19 dogs with naturally occurring invasive urothelial carcinoma. In the 28-day cohort the maximum tolerated dose was 0.20 mg/kg per day with higher doses resulting in grade 3 or 4 neutropenia in 4 of 6 dogs. In the 14-day cohort the maximum tolerated dose was 0.10 mg/kg per day with grade 3 or 4 neutropenia seen in 2 of 3 dogs treated at higher doses. No grade 3 or 4 nonhematological toxicity was observed during either dosing schedule. Of 18 dogs evaluable for tumor response partial remission, stable disease and progressive disease were observed in 4 (22.2%), 9 (50.0%) and 4 (22.2%), respectively. Consistent 5-azacitidine levels (205 to 857 ng/ml) were detected in urine. Pretreatment and posttreatment methylation analysis revealed no significant correlation with clinical response.
Conclusions
Subcutaneous 5-azacitidine showed promising clinical activity in a canine invasive urothelial carcinoma model, thus meriting further development in humans with urothelial carcinoma.
doi:10.1016/j.juro.2011.09.010
PMCID: PMC3508763  PMID: 22099988
urinary bladder; urothelium; carcinoma; azacitidine; dogs
19.  Both Ends of the Leash — The Human Links to Good Dogs with Bad Genes 
The New England journal of medicine  2012;367(7):636-646.
For nearly 350 years, veterinary medicine and human medicine have been separate entities, with one geared toward the diagnosis and treatment in animals and the other toward parallel goals in the owners. However, that model no longer fits, since research on diseases of humans and companion animals has coalesced.1–4 The catalyst for this union has been the completion of the human genome sequence, coupled with draft sequence assemblies of genomes for companion animals.5,6 Here, we summarize the critical events in canine genetics and genomics that have led to this development, review major applications in canine health that will be of interest to human caregivers, and discuss expectations for the future.
doi:10.1056/NEJMra1204453
PMCID: PMC3508784  PMID: 22894576
20.  Genome-wide association studies for multiple diseases of the German Shepherd Dog 
The German Shepherd Dog (GSD) is a popular working and companion breed for which over 50 hereditary diseases have been documented. Herein, SNP profiles for 197 GSDs were generated using the Affymetrix v2 canine SNP array for a genome-wide association study to identify loci associated with four diseases: pituitary dwarfism, degenerative myelopathy (DM), congenital megaesophagus (ME), and pancreatic acinar atrophy (PAA). A locus on Chr 9 is strongly associated with pituitary dwarfism and is proximal to a plausible candidate gene, LHX3. Results for DM confirm a major locus encompassing SOD1, in which an associated point mutation was previously identified, but do not suggest modifier loci. Several SNPs on Chr 12 are associated with ME and a 4.7 Mb haplotype block is present in affected dogs. Analysis of additional ME cases for a SNP within the haplotype provides further support for this association. Results for PAA indicate more complex genetic underpinnings. Several regions on multiple chromosomes reach genome-wide significance. However, no major locus is apparent and only two associated haplotype blocks, on Chrs 7 and 12 are observed. These data suggest that PAA may be governed by multiple loci with small effects, or it may be a heterogeneous disorder.
doi:10.1007/s00335-011-9376-9
PMCID: PMC3509149  PMID: 22105877
21.  Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication 
Nature  2010;464(7290):898-902.
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1,2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
doi:10.1038/nature08837
PMCID: PMC3494089  PMID: 20237475
22.  HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG) 
Human Genetics  2012;132(1):5-14.
Prostate cancer has a strong familial component but uncovering the molecular basis for inherited susceptibility for this disease has been challenging. Recently, a rare, recurrent mutation (G84E) in HOXB13 was reported to be associated with prostate cancer risk. Confirmation and characterization of this finding is necessary to potentially translate this information to the clinic. To examine this finding in a large international sample of prostate cancer families, we genotyped this mutation and 14 other SNPs in or flanking HOXB13 in 2,443 prostate cancer families recruited by the International Consortium for Prostate Cancer Genetics (ICPCG). At least one mutation carrier was found in 112 prostate cancer families (4.6 %), all of European descent. Within carrier families, the G84E mutation was more common in men with a diagnosis of prostate cancer (194 of 382, 51 %) than those without (42 of 137, 30 %), P = 9.9 × 10−8 [odds ratio 4.42 (95 % confidence interval 2.56–7.64)]. A family-based association test found G84E to be significantly over-transmitted from parents to affected offspring (P = 6.5 × 10−6). Analysis of markers flanking the G84E mutation indicates that it resides in the same haplotype in 95 % of carriers, consistent with a founder effect. Clinical characteristics of cancers in mutation carriers included features of high-risk disease. These findings demonstrate that the HOXB13 G84E mutation is present in ~5 % of prostate cancer families, predominantly of European descent, and confirm its association with prostate cancer risk. While future studies are needed to more fully define the clinical utility of this observation, this allele and others like it could form the basis for early, targeted screening of men at elevated risk for this common, clinically heterogeneous cancer.
Electronic supplementary material
The online version of this article (doi:10.1007/s00439-012-1229-4) contains supplementary material, which is available to authorized users.
doi:10.1007/s00439-012-1229-4
PMCID: PMC3535370  PMID: 23064873
23.  An SNP within the Angiotensin-Converting Enzyme Distinguishes between Sprint and Distance Performing Alaskan Sled Dogs in a Candidate Gene Analysis 
Journal of Heredity  2011;102(Suppl 1):S19-S27.
The Alaskan sled dog offers a unique mechanism for studying the genetics of elite athletic performance. They are a group of mixed breed dogs, comprised of multiple common breeds, and a unique breed entity seen only as a part of the sled dog mix. Alaskan sled dogs are divided into 2 primary groups as determined by their racing skills. Distance dogs are capable of running over 1000 miles in 10 days, whereas sprint dogs run much shorter distances, approximately 30 miles, but in faster times, that is, 18–25 mph. Finding the genes that distinguish these 2 types of performers is likely to illuminate genetic contributors to human athletic performance. In this study, we tested for association between polymorphisms in 2 candidate genes; angiotensin-converting enzyme (ACE) and myostatin (MSTN) and enhanced speed and endurance performance in 174 Alaskan sled dogs. We observed 81 novel genetic variants within the ACE gene and 4 within the MSTN gene, including a polymorphism within the ACE gene that significantly (P value 2.38 × 10−5) distinguished the sprint versus distance populations.
doi:10.1093/jhered/esr022
PMCID: PMC3157885  PMID: 21846742
Alaskan sled dogs; angiotensin-converting enzyme; myostatin; performance genetics
24.  Genetic Variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF Genes Are Prognostic Markers of Prostate Cancer-Specific Mortality 
Background
Prostate cancer is the second leading cause of cancer-related deaths in men, accounting for over 30,000 deaths annually. The purpose of this study was to test whether variation in selected candidate genes in biological pathways of interest for prostate cancer progression could help distinguish patients at higher risk for fatal prostate cancer.
Methods
In this hypothesis-driven study, we genotyped 937 single nucleotide polymorphisms (SNPs) in 156 candidate genes in a population-based cohort of 1,309 prostate cancer patients. We identified 22 top-ranking SNPs (P ≤0.01, FDR ≤0.70) associated with prostate cancer-specific mortality (PCSM). A subsequent validation study was completed in an independent population-based cohort of 2,875 prostate cancer patients.
Results
Five SNPs were validated (P ≤0.05) as being significantly associated with PCSM, one each in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes. Compared to patients with 0–2 of the at-risk genotypes those with 4–5 at-risk genotypes had a 50% (95% CI, 1.2–1.9) higher risk of PCSM and risk increased with the number of at-risk genotypes carried (Ptrend = 0.001), adjusting for clinicopathological factors known to influence prognosis.
Conclusion
Five genetic markers were validated to be associated with lethal prostate cancer.
Impact
This is the first population-based study to demonstrate that germline genetic variants provide prognostic information for prostate cancer-specific survival. The clinical utility of this five-SNP panel to stratify patients at higher risk for adverse outcomes should be evaluated.
doi:10.1158/1055-9965.EPI-11-0236
PMCID: PMC3169727  PMID: 21846818
Prostate cancer-specific mortality; survival; genetic variants; single nucleotide polymorphisms; hazard ratio
25.  Genome-wide linkage analysis of 1233 prostate cancer pedigrees from the International Consortium for Prostate Cancer Genetics using novel sumLINK and sumLOD analyses 
The Prostate  2010;70(7):735-744.
Background
Prostate cancer is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity.
Methods
We performed a secondary analysis of 1233 prostate cancer pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing.
Results
Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genomewide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11-q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive prostate cancer (PC) pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM.
Conclusions
Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk prostate cancer pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify prostate cancer predisposition genes.
doi:10.1002/pros.21106
PMCID: PMC3428045  PMID: 20333727

Results 1-25 (101)