PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  An SNP within the Angiotensin-Converting Enzyme Distinguishes between Sprint and Distance Performing Alaskan Sled Dogs in a Candidate Gene Analysis 
Journal of Heredity  2011;102(Suppl 1):S19-S27.
The Alaskan sled dog offers a unique mechanism for studying the genetics of elite athletic performance. They are a group of mixed breed dogs, comprised of multiple common breeds, and a unique breed entity seen only as a part of the sled dog mix. Alaskan sled dogs are divided into 2 primary groups as determined by their racing skills. Distance dogs are capable of running over 1000 miles in 10 days, whereas sprint dogs run much shorter distances, approximately 30 miles, but in faster times, that is, 18–25 mph. Finding the genes that distinguish these 2 types of performers is likely to illuminate genetic contributors to human athletic performance. In this study, we tested for association between polymorphisms in 2 candidate genes; angiotensin-converting enzyme (ACE) and myostatin (MSTN) and enhanced speed and endurance performance in 174 Alaskan sled dogs. We observed 81 novel genetic variants within the ACE gene and 4 within the MSTN gene, including a polymorphism within the ACE gene that significantly (P value 2.38 × 10−5) distinguished the sprint versus distance populations.
doi:10.1093/jhered/esr022
PMCID: PMC3157885  PMID: 21846742
Alaskan sled dogs; angiotensin-converting enzyme; myostatin; performance genetics
2.  Variation of BMP3 Contributes to Dog Breed Skull Diversity 
PLoS Genetics  2012;8(8):e1002849.
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait.
Author Summary
As a result of selective breeding practices, modern dogs display a multitude of head shapes. Breeds such as the Pug and Bulldog popularize one of these morphologies, termed “brachycephaly.” A short, upward-pointing snout, a massive and rounded head, and an underbite typify brachycephalic breeds. Here, we have coupled the phenotypes collected from museum skulls with the genotypes collected from dogs and identified five regions of the dog genome that are associated with canine brachycephaly. Fine mapping at one of these regions revealed a causal mutation in the gene BMP3. Bmp3's role in regulating cranial development is evolutionarily ancient, as zebrafish require its function to generate a normal craniofacial morphology. Our data begin to expose the genetic mechanisms unknowingly employed by breeders to create and diversify the cranial shape of dogs.
doi:10.1371/journal.pgen.1002849
PMCID: PMC3410846  PMID: 22876193
3.  Breed-Specific Ancestry Studies and Genome-Wide Association Analysis Highlight an Association Between the MYH9 Gene and Heat Tolerance in Alaskan Sprint Racing Sled Dogs 
Mammalian Genome  2011;23(1-2):178-194.
Alaskan sled dogs are a genetically distinct population shaped by generations of selective interbreeding with purebred dogs to create a group of high performance athletes. As a result of selective breeding strategies, sled dogs present a unique opportunity to employ admixture-mapping techniques to investigate how breed composition and trait selection impact genomic structure. We used admixture mapping to investigate genetic ancestry across the genomes of two classes of sled dogs, sprint and long distance racers, and combined that with genome wide association studies (GWAS) to identify regions correlating with performance enhancing traits. The sled dog genome is enhanced by differential contributions from four non-admixed breeds (Alaskan Malamute, Siberian Husky, German Shorthaired Pointer, and Borzoi). A principle components analysis (PCA) of 115,000 genome-wide SNPs clearly resolved the sprint and distance populations as distinct genetic groups, with longer blocks of linkage disequilibrium (LD) observed in the distance versus sprint dogs (7.5–10 and 2.5–3.75 kb, respectively). Further, we identified eight regions with the genomic signal either from a selective sweep or an association analysis, corroborated by an excess of ancestry when comparing sprint and distance dogs. A comparison of elite and poor performing sled dogs identified a single region significantly association with heat tolerance. Within the region we identified seven SNPs within the myosin heavy chain 9 gene (MYH9) that were significantly associated with heat tolerance in sprint dogs, two of which correspond to conserved promoter and enhancer regions in the human ortholog.
doi:10.1007/s00335-011-9374-y
PMCID: PMC3320045  PMID: 22105876
canine; admixture; attributes; GWAS
4.  Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes 
Science (New York, N.Y.)  2009;326(5949):150-153.
Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin–2, fibroblast growth factor–5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.
doi:10.1126/science.1177808
PMCID: PMC2897713  PMID: 19713490

Results 1-4 (4)