Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Seasonal influence over serum and urine metabolic markers in submariners during prolonged patrols 
Physiological Reports  2015;3(8):e12494.
Within the framework of earlier publications, we have consistently dedicated our investigations to eliciting the effects of both seasonal vitamin D deficiency and submarine-induced hypercapnia on serum parameters for acid–base balance and bone metabolism in submariners over a 2-month winter (WP) or summer (SP) patrols. The latest findings reported herein, contribute further evidence with regard to overall physiological regulations in the same submariner populations that underwent past scrutiny. Hence, urine and blood samples were collected in WP and SP submariners at control prepatrol time as well as on submarine patrol days 20, 41, and 58. Several urine and serum metabolic markers were quantified, namely, deoxypyridinoline (DPD), lactate, albumin, creatinine, nonesterified fatty acids (NEFA), and ionized sodium (Na+) or potassium (K+), with a view to assessing bone, muscle, liver, or kidney metabolisms. We evidenced bone metabolism alteration (urine DPD, calcium, and phosphorus) previously recorded in submarine crewmembers under prolonged patrols. We also highlighted transitory modifications in liver metabolism (serum albumin) occurring within the first 20 days of submersion. We further evidenced changes in submariners’ renal physiology (serum creatinine) throughout the entire patrol time span. Measurements of ionic homeostasis (serum Na+ and K+) displayed potential seasonal impact over active ionic pumps in submariners. Finally, there is some evidence that submersion provides beneficial conditions prone to fend off seasonal lactic acidosis (serum lactate) detected in WP submariners.
PMCID: PMC4562580  PMID: 26265754
Hypercapnia; hypovitaminosis D; metabolic markers; submariners
2.  The MTAP-CDKN2A Locus Confers Susceptibility to a Naturally Occurring Canine Cancer 
Advantages offered by canine population substructure, combined with clinical presentations similar to human disorders, makes the dog an attractive system for studies of cancer genetics. Cancers that have been difficult to study in human families or populations are of particular interest. Histiocytic sarcoma is a rare and poorly understood neoplasm in humans that occurs in 15–25% of Bernese Mountain Dogs (BMD).
Genomic DNA was collected from affected and unaffected BMD in North America (NA) and Europe. Both independent and combined genome wide association studies (GWAS) were used to identify cancer-associated loci. Fine mapping and sequencing narrowed the primary locus to a single gene region.
Both populations shared the same primary locus, which features a single haplotype spanning MTAP and part of CDKN2A and is present in 96% of affected BMD. The haplotype is within the region homologous to human chromosome 9p21, which has been implicated in several types of cancer.
We present the first GWAS for HS in any species. The data identify an associated haplotype in the highly cited tumor suppressor locus near CDKN2A. These data demonstrate the power of studying distinctive malignancies in highly predisposed dog breeds.
Here, we establish a naturally-occurring model of cancer susceptibility due to CDKN2 dysregulation, thus providing insight regarding this cancer-associated, complex, and poorly understood genomic region.
PMCID: PMC3392365  PMID: 22623710
Genome Wide Association Study; Dogs; p16; Cancer; Histiocytic sarcoma
3.  NDM-1-Producing Klebsiella pneumoniae Resistant to Colistin in a French Community Patient without History of Foreign Travel 
A carbapenem-resistant Klebsiella pneumoniae strain, Kp5196, was responsible for an uncomplicated cystitis in a patient living at home and without history of foreign travel. This isolate produced the metallocarbapenemase NDM-1 and was resistant to all antibiotics except tetracyclines and colistin. The K. pneumoniae strain belonged to sequence type ST15, and blaNDM-1 was carried by a nontypeable conjugative plasmid. Two months later, a similar ST15 isolate, Kp5241, was present in the patient but was additionally colistin resistant.
PMCID: PMC3370718  PMID: 22450982
4.  Novel origins of copy number variation in the dog genome 
Genome Biology  2012;13(8):R73.
Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves.
We use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints.
A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.
PMCID: PMC4053742  PMID: 22916802
5.  Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping 
PLoS Genetics  2011;7(10):e1002316.
The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.
Author Summary
There are hundreds of dog breeds that exhibit massive differences in appearance and behavior sculpted by tightly controlled selective breeding. This large-scale natural experiment has provided an ideal resource that geneticists can use to search for genetic variants that control these differences. With this goal, we developed a high-density array that surveys variable sites at more than 170,000 positions in the dog genome and used it to analyze genetic variation in 46 breeds. We identify 44 chromosomal regions that are extremely variable between breeds and are likely to control many of the traits that vary between them, including curly tails and sociality. Many other regions also bear the signature of strong artificial selection. We characterize one such region, known to associate with body size and ear type, in detail using “next-generation” sequencing technology to identify candidate mutations that may control these traits. Our results suggest that artificial selection has targeted genes involved in development and metabolism and that it may have increased the incidence of disease in dog breeds. Knowledge of these regions will be of great importance for uncovering the genetic basis of variation between dog breeds and for finding mutations that cause disease.
PMCID: PMC3192833  PMID: 22022279
6.  Comparison of buccal and blood-derived canine DNA, either native or whole genome amplified, for array-based genome-wide association studies 
BMC Research Notes  2011;4:226.
The availability of array-based genotyping platforms for single nucleotide polymorphisms (SNPs) for the canine genome has expanded the opportunities to undertake genome-wide association (GWA) studies to identify the genetic basis for Mendelian and complex traits. Whole blood as the source of high quality DNA is undisputed but often proves impractical for collection of the large numbers of samples necessary to discover the loci underlying complex traits. Further, many countries prohibit the collection of blood from dogs unless medically necessary thereby restricting access to critical control samples from healthy dogs. Alternate sources of DNA, typically from buccal cytobrush extractions, while convenient, have been suggested to have low yield and perform poorly in GWA. Yet buccal cytobrushes provide a cost-effective means of collecting DNA, are readily accepted by dog owners, and represent a large resource base in many canine genetics laboratories. To increase the DNA quantities, whole genome amplification (WGA) can be performed. Thus, the present study assessed the utility of buccal-derived DNA as well as whole genome amplification in comparison to blood samples for use on the most recent iteration of the canine HD SNP array (Illumina).
In both buccal and blood samples, whether whole genome amplified or not, 97% of the samples had SNP call rates in excess of 80% indicating that the vast majority of the SNPs would be suitable to perform association studies regardless of the DNA source. Similarly, there were no significant differences in marker intensity measurements between buccal and blood samples for copy number variations (CNV) analysis.
All DNA samples assayed, buccal or blood, native or whole genome amplified, are appropriate for use in array-based genome-wide association studies. The concordance between subsets of dogs for which both buccal and blood samples, or those samples whole genome amplified, was shown to average >99%. Thus, the two DNA sources were comparable in the generation of SNP genotypes and intensity values to estimate structural variation indicating the utility for the use of buccal cytobrush samples and the reliability of whole genome amplification for genome-wide association and CNV studies.
PMCID: PMC3145587  PMID: 21718521
7.  Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes 
Science (New York, N.Y.)  2009;326(5949):150-153.
Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin–2, fibroblast growth factor–5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.
PMCID: PMC2897713  PMID: 19713490
8.  Epidemiology, Pathology, and Genetics of Histiocytic Sarcoma in the Bernese Mountain Dog Breed 
Journal of Heredity  2009;100(Suppl 1):S19-S27.
Histiocytic sarcoma (HS) refers to a highly aggressive and frequently disseminated neoplastic disease belonging to the class of canine histiocytic proliferative disorders. Disseminated HS (previously called malignant histiocytosis) is highly breed specific, with Bernese mountain dogs (BMDs), rottweilers, and retrievers having a high prevalence with a frequency of approximately 25% in the BMD breed. We collected DNA samples and clinical information from 800 BMDs, of which 200 are affected by HS. To better characterize the physiopathology and epidemiology, an in-depth analysis of 89 BMD cases has been performed. The mean age of onset was 6.5 years, males and females being equally affected. The clinical features, biochemical parameters, and pathological features have been determined. The life span after diagnosis has been estimated to be 49 days. A large BMD pedigree of 327 dogs, 121 of which are affected, was assembled. Using a subset of 160 BMDs, encompassing 21 complete sibships, we now propose an oligogenic transmission mode of the disease. Whole-genome linkage scans as well as association studies using a case/control analysis, in parallel with expression profiling of neoplastic versus normal histiocytes, are all underway. Altogether, these complementary approaches are expected to localize the genes for HS in the BMD, leading to advances in our knowledge of histiocyte diseases in dogs and humans.
PMCID: PMC3139364  PMID: 19531730
Bernese mountain dogs; cancer; dog; genetics; histiocytic sarcoma
9.  Revisiting the missing protein-coding gene catalog of the domestic dog 
BMC Genomics  2009;10:62.
Among mammals for which there is a high sequence coverage, the whole genome assembly of the dog is unique in that it predicts a low number of protein-coding genes, ~19,000, compared to the over 20,000 reported for other mammalian species. Of particular interest are the more than 400 of genes annotated in primates and rodent genomes, but missing in dog.
Using over 14,000 orthologous genes between human, chimpanzee, mouse rat and dog, we built multiple pairwise synteny maps to infer short orthologous intervals that were targeted for characterizing the canine missing genes. Based on gene prediction and a functionality test using the ratio of replacement to silent nucleotide substitution rates (dN/dS), we provide compelling structural and functional evidence for the identification of 232 new protein-coding genes in the canine genome and 69 gene losses, characterized as undetected gene or pseudogenes. Gene loss phyletic pattern analysis using ten species from chicken to human allowed us to characterize 28 canine-specific gene losses that have functional orthologs continuously from chicken or marsupials through human, and 10 genes that arose specifically in the evolutionary lineage leading to rodent and primates.
This study demonstrates the central role of comparative genomics for refining gene catalogs and exploring the evolutionary history of gene repertoires, particularly as applied for the characterization of species-specific gene gains and losses.
PMCID: PMC2644713  PMID: 19193219
10.  Genetic diversity of canine olfactory receptors 
BMC Genomics  2009;10:21.
Evolution has resulted in large repertoires of olfactory receptor (OR) genes, forming the largest gene families in mammalian genomes. Knowledge of the genetic diversity of olfactory receptors is essential if we are to understand the differences in olfactory sensory capability between individuals. Canine breeds constitute an attractive model system for such investigations.
We sequenced 109 OR genes considered representative of the whole OR canine repertoire, which consists of more than 800 genes, in a cohort of 48 dogs of six different breeds. SNP frequency showed the overall level of polymorphism to be high. However, the distribution of SNP was highly heterogeneous among OR genes. More than 50% of OR genes were found to harbour a large number of SNP, whereas the rest were devoid of SNP or only slightly polymorphic. Heterogeneity was also observed across breeds, with 25% of the SNP breed-specific. Linkage disequilibrium within OR genes and OR clusters suggested a gene conversion process, consistent with a mean level of polymorphism higher than that observed for introns and intergenic sequences. A large proportion (47%) of SNP induced amino-acid changes and the Ka/Ks ratio calculated for all alleles with a complete ORF indicated a low selective constraint with respect to the high level of redundancy of the olfactory combinatory code and an ongoing pseudogenisation process, which affects dog breeds differently.
Our demonstration of a high overall level of polymorphism, likely to modify the ligand-binding capacity of receptors distributed differently within the six breeds tested, is the first step towards understanding why Labrador Retrievers and German Shepherd Dogs have a much greater potential for use as sniffer dogs than Pekingese dogs or Greyhounds. Furthermore, the heterogeneity in OR polymorphism observed raises questions as to why, in a context in which most OR genes are highly polymorphic, a subset of these genes is not? This phenomenon may be related to the nature of their ligands and their importance in everyday life.
PMCID: PMC2635374  PMID: 19144169
11.  Progressive Retinal Atrophy in the Border Collie: A new XLPRA 
Several forms of progressive retinal atrophy (PRA) segregate in more than 100 breeds of dog with each PRA segregating in one or a few breeds. This breed specificity may be accounted for by founder effects and genetic drift, which have reduced the genetic heterogeneity of each breed, thereby facilitating the identification of causal mutations. We report here a new form of PRA segregating in the Border Collie breed. The clinical signs, including the loss of night vision and a progressive loss of day vision, resulting in complete blindness, occur at the age of three to four years and may be detected earlier through systematic ocular fundus examination and electroretinography (ERG).
Ophthalmic examinations performed on 487 dogs showed that affected dogs present a classical form of PRA. Of those, 274 have been sampled for DNA extraction and 87 could be connected through a large pedigree. Segregation analysis suggested an X-linked mode of transmission; therefore both XLPRA1 and XLPRA2 mutations were excluded through the genetic tests.
Having excluded these mutations, we suggest that this PRA segregating in Border Collie is a new XLPRA (XLPRA3) and propose it as a potential model for the homologous human disease, X-Linked Retinitis Pigmentosa.
PMCID: PMC2324077  PMID: 18315866
12.  Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae Strains in Various Types of Private Health Care Centers▿  
During a 2004 survey, 49 extended-spectrum-β-lactamase-producing enterobacteria were collected in 20 French private health care centers and one local hospital. They included 12 CTX-M-producing Escherichia coli strains (1.8% versus 0.3% in a 1999 survey). Most of them belonged to the same clone and contained a blaCTX-M-15 gene on similar conjugative plasmids.
PMCID: PMC2043178  PMID: 17591853
13.  Canine Population Structure: Assessment and Impact of Intra-Breed Stratification on SNP-Based Association Studies 
PLoS ONE  2007;2(12):e1324.
In canine genetics, the impact of population structure on whole genome association studies is typically addressed by sampling approximately equal numbers of cases and controls from dogs of a single breed, usually from the same country or geographic area. However one way to increase the power of genetic studies is to sample individuals of the same breed but from different geographic areas, with the expectation that independent meiotic events will have shortened the presumed ancestral haplotype around the mutation differently. Little is known, however, about genetic variation among dogs of the same breed collected from different geographic regions.
Methodology/Principal Findings
In this report, we address the magnitude and impact of genetic diversity among common breeds sampled in the U.S. and Europe. The breeds selected, including the Rottweiler, Bernese mountain dog, flat-coated retriever, and golden retriever, share susceptibility to a class of soft tissue cancers typified by malignant histiocytosis in the Bernese mountain dog. We genotyped 722 SNPs at four unlinked loci (between 95 and 271 per locus) on canine chromosome 1 (CFA1). We showed that each population is characterized by distinct genetic diversity that can be correlated with breed history. When the breed studied has a reduced intra-breed diversity, the combination of dogs from international locations does not increase the rate of false positives and potentially increases the power of association studies. However, over-sampling cases from one geographic location is more likely to lead to false positive results in breeds with significant genetic diversity.
These data provide new guidelines for association studies using purebred dogs that take into account population structure.
PMCID: PMC2129117  PMID: 18091995
14.  Coat colour in dogs: identification of the Merle locus in the Australian shepherd breed 
Coat colours in canines have many natural phenotypic variants. Some of the genes and alleles involved also cause genetic developmental defects, which are also observed in humans and mice. We studied the genetic bases of the merle phenotype in dogs to shed light on the pigmentation mechanisms and to identify genes involved in these complex pathways. The merle phenotype includes a lack of eumelanic pigmentation and developmental defects, hearing impairments and microphthalmia. It is similar to that observed in microphthalmia mouse mutants.
Taking advantage of the dog as a powerful genetic model and using recently available genomic resources, we investigated the segregation of the merle phenotype in a five-generation pedigree, comprising 96 sampled Australian shepherd dogs. Genetic linkage analysis allowed us to identify a locus for the merle phenotype, spanning 5.5 megabases, at the centromeric tip of canine chromosome 10 (CFA10). This locus was supported by a Lod score of 15.65 at a recombination fraction θ = 0. Linkage analysis in three other breeds revealed that the same region is linked to the merle phenotype. This region, which is orthologous to human chromosome 12 (HSA12 q13-q14), belongs to a conserved ordered segment in the human and mouse genome and comprises several genes potentially involved in pigmentation and development.
This study has identified the locus for the merle coat colour in dogs to be at the centromeric end of CFA10. Genetic studies on other breeds segregating the merle phenotype should allow the locus to be defined more accurately with the aim of identifying the gene. This work shows the power of the canine system to search for the genetic bases of mammalian pigmentation and developmental pathways.
PMCID: PMC1431520  PMID: 16504149
15.  An integrated 4249 marker FISH/RH map of the canine genome 
BMC Genomics  2004;5:65.
The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology.
To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH) map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs) localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH). The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS) between the dog and human genomes, dramatically extending the length of most previously described CS.
These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps.
PMCID: PMC520820  PMID: 15363096
canine; dog; radiation hybrid; microsatellites; ESTs; BAC-ends
16.  Comparison of the canine and human olfactory receptor gene repertoires 
Genome Biology  2003;4(12):R80.
In this study, 817 novel canine olfactory receptor (OR) sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse.
Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date.
In this study, 817 novel canine OR sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Phylogenetic analysis of 403 canine OR sequences identified 51 families, and radiation-hybrid mapping of 562 showed that they are distributed on 24 dog chromosomes, in 37 distinct regions. Most of these regions constitute clusters of 2 to 124 closely linked genes. The two largest clusters (124 and 109 OR genes) are located on canine chromosomes 18 and 21. They are orthologous to human clusters located on human chromosomes 11q11-q13 and HSA11p15, containing 174 and 115 ORs respectively.
This study shows a strongly conserved genomic distribution of OR genes between dog and human, suggesting that OR genes evolved from a common mammalian ancestral repertoire by successive duplications. In addition, the dog repertoire appears to have expanded relative to that of humans, leading to the emergence of specific canine OR genes.
PMCID: PMC329419  PMID: 14659017
17.  Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Community and Private Health Care Centers 
Antimicrobial Agents and Chemotherapy  2003;47(11):3506-3514.
In 1999, 39 of 2,599 isolates of the family Enterobacteriaceae (1.5%) collected by eight private laboratories in the Aquitaine region in France produced an extended-spectrum β-lactamase (ESBL). Among these were 19 Enterobacter aerogenes isolates; 8 Klebsiella pneumoniae isolates; 6 Escherichia coli isolates; 3 Proteus mirabilis isolates; and 1 isolate each of Serratia marcescens, Morganella morganii, and Providencia stuartii. ESBL producers were isolated from 38 patients, including 33 residents of 11 clinics or nursing homes and 5 ambulatory patients. Seven different ESBLs were characterized. These mainly consisted of TEM-24 (25 isolates) and TEM-21 (9 isolates), but TEM-15 (2 isolates) and TEM-3, TEM-19, SHV-4, and CTX-M-1 (1 isolate each) were also characterized. Seven strains showed the coexistence of different TEM- and/or SHV-encoding genes, including a new SHV-1 variant, SHV-44, defined by the substitution R205L previously reported for SHV-3 in association with S238G. The epidemiology of the ESBL producers was investigated by random amplification of polymorphic DNA, typing by enterobacterial repetitive intergenic consensus PCR, analysis of resistance cotransferred with the ESBL, and analysis of the restriction profiles of the ESBL-encoding plasmids. Of the TEM-24-expressing strains, 18 were E. aerogenes isolates, including 9 from the same clinic, that were representatives of the epidemic clone disseminating in France. Of the TEM-21-producing strains that belonged to different species of the family Enterobacteriaceae (E. coli, K. pneumoniae, and P. mirabilis), 8 were isolated in the same nursing home. Outbreaks due to strain and/or plasmid dissemination in these clinic and nursing home were demonstrated. The presence of ESBL producers in five ambulatory patients probably resulted from nosocomial acquisition. Our data highlight the serious need to monitor patients for ESBL-producing Enterobacteriaceae in general practice.
PMCID: PMC253776  PMID: 14576109

Results 1-17 (17)