PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Human Immune Response to Dengue Virus Is Dominated by Highly Cross-Reactive Antibodies Endowed with Neutralizing and Enhancing Activity 
Cell host & microbe  2010;8(3):10.1016/j.chom.2010.08.007.
Summary
Antibodies protect against homologous Dengue virus (DENV) infection but can precipitate severe dengue by promoting heterotypic virus entry via Fcγ receptors (FcγR). We immortalized memory B cells from individuals after primary or secondary infection and analyzed anti-DENV monoclonal antibodies (mAbs) thus generated. MAbs to envelope (E) protein domain III (DIII) were either serotype specific or cross-reactive and potently neutralized DENV infection. DI/DII- or viral membrane protein prM-reactive mAbs neutralized poorly and showed broad cross-reactivity with the four DENV serotypes. All mAbs enhanced infection at subneutralizing concentrations. Three mAbs targeting distinct epitopes on the four DENV serotypes and engineered to prevent FcγR binding did not enhance infection and neutralized DENV in vitro and in vivo as postexposure therapy in a mouse model of lethal DENV infection. Our findings reveal an unexpected degree of cross-reactivity in human antibodies against DENV and illustrate the potential for an antibody-based therapy to control severe dengue.
doi:10.1016/j.chom.2010.08.007
PMCID: PMC3884547  PMID: 20833378
2.  The respiratory syncytial virus nucleoprotein–RNA complex forms a left-handed helical nucleocapsid 
The Journal of General Virology  2013;94(Pt 8):1734-1738.
Respiratory syncytial virus (RSV) is an important human pathogen. Its nucleocapsid (NC), which comprises the negative sense RNA viral genome coated by the viral nucleoprotein N, is a critical assembly that serves as template for both mRNA synthesis and genome replication. We have previously described the X-ray structure of an NC-like structure: a decameric ring formed of N-RNA that mimics one turn of the helical NC. In the absence of experimental data we had hypothesized that the NC helix would be right-handed, as the N–N contacts in the ring appeared to more easily adapt to that conformation. We now unambiguously show that the RSV NC is a left-handed helix. We further show that the contacts in the ring can be distorted to maintain key N–N-protein interactions in a left-handed helix, and discuss the implications of the resulting atomic model of the helical NC for viral replication and transcription.
doi:10.1099/vir.0.053025-0
PMCID: PMC3749527  PMID: 23677789
3.  High-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells 
Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (VH) and light (VL) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Although scFvs can be expressed in many different organisms, the expression level of an scFv strongly depends on its particular amino acid sequence. We report here a system allowing for easy and efficient cloning of (i) scFvs selected by phage display and (ii) individual heavy and light chain sequences from hybridoma cDNA into expression plasmids engineered for secretion of the recombinant fragment produced in Drosophila S2 cells. We validated the method by producing five scFvs derived from human and murine parent antibodies directed against various antigens. The production yields varied between 5 and 12 mg monomeric scFv per liter of supernatant, indicating a relative independence on the individual sequences. The recombinant scFvs bound their cognate antigen with high affinity, comparable with the parent antibodies. The suitability of the produced recombinant fragments for structural studies was demonstrated by crystallization and structure determination of one of the produced scFvs, derived from a broadly neutralizing antibody against the major glycoprotein E2 of the hepatitis C virus. Structural comparison with the Protein Data Bank revealed the typical spatial organization of VH and VL domains, further validating the here-reported expression system.
doi:10.1093/protein/gzr058
PMCID: PMC3258843  PMID: 22160929
crystallization; Drosophila S2; expression system; monomeric; scFv
4.  Crystal Structure of an Aquabirnavirus Particle: Insights into Antigenic Diversity and Virulence Determinism▿  
Journal of Virology  2009;84(4):1792-1799.
Infectious pancreatic necrosis virus (IPNV), a pathogen of salmon and trout, imposes a severe toll on the aquaculture and sea farming industries. IPNV belongs to the Aquabirnavirus genus in the Birnaviridae family of bisegmented double-stranded RNA viruses. The virions are nonenveloped with a T=13l icosahedral capsid made by the coat protein VP2, the three-dimensional (3D) organization of which is known in detail for the family prototype, the infectious bursal disease virus (IBDV) of poultry. A salient feature of the birnavirus architecture is the presence of 260 trimeric spikes formed by VP2, projecting radially from the capsid. The spikes carry the principal antigenic sites as well as virulence and cell adaptation determinants. We report here the 3.4-Å resolution crystal structure of a subviral particle (SVP) of IPNV, containing 20 VP2 trimers organized with icosahedral symmetry. We show that, as expected, the SVPs have a very similar organization to the IBDV counterparts, with VP2 exhibiting the same overall 3D fold. However, the spikes are significantly different, displaying a more compact organization with tighter packing about the molecular 3-fold axis. Amino acids controlling virulence and cell culture adaptation cluster differently at the top of the spike, i.e., in a central bowl in IBDV and at the periphery in IPNV. In contrast, the spike base features an exposed groove, conserved across birnavirus genera, which contains an integrin-binding motif. Thus, in addition to revealing the viral antigenic determinants, the structure suggests that birnaviruses interact with different receptors for attachment and for cell internalization during entry.
doi:10.1128/JVI.01536-09
PMCID: PMC2812366  PMID: 20007275
5.  The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule 
PLoS Pathogens  2010;6(2):e1000762.
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.
Author Summary
Little is known about the structure of the envelope glycoproteins of the hepatitis C virus (HCV), in spite of their essential role in the viral cycle of this major human pathogen. Here, we determined the connectivity of the 9 disulfide bonds formed by the strictly conserved 18 cysteines of the ectodomain of HCV glycoprotein E2. We show that this information, together with important functional data available in the literature, impose important restrictions to the possible three-dimensional fold of the molecule. Indeed, these constraints allow the unambiguous threading of the predicted secondary structure elements along the polypeptide chain onto the template provided by the crystal structures of related flavi- and alphavirus class II fusion proteins. The resulting model of the tertiary organization of E2 shows the amino acid distribution among the characteristic class II domains, places the CD81 binding site at the interface of domains I and III, and highlights the location of a candidate fusion loop.
doi:10.1371/journal.ppat.1000762
PMCID: PMC2824758  PMID: 20174556
6.  Dermal-Type Macrophages Expressing CD209/DC-SIGN Show Inherent Resistance to Dengue Virus Growth 
Background
An important question in dengue pathogenesis is the identity of immune cells involved in the control of dengue virus infection at the site of the mosquito bite. There is evidence that infection of immature myeloid dendritic cells plays a crucial role in dengue pathogenesis and that the interaction of the viral envelope E glycoprotein with CD209/DC-SIGN is a key element for their productive infection. Dermal macrophages express CD209, yet little is known about their role in dengue virus infection.
Methods and Findings
Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-α was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.
Conclusions
Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.
Author Summary
Mosquito-transmitted pathogens are a major challenge to humans due to ever-increasing distribution of the vector worldwide. Dengue virus causes morbidity and mortality, and no anti-viral treatment or vaccine are currently available. The virus is injected into the skin when an infected mosquito probes for blood. Among the skin immunocytes, dendritic cells and macrophages are equipped with pathogen-sensing receptors. Our work has shown that dermal macrophages bind the dengue virus envelope protein. We demonstrate that monocyte-derived dermal macrophages are resistant to infection and present evidence that this is due to sequestration of the virus into fusion-incompetent intracellular vesicles. This identifies skin macrophages as the first innate immune cell potentially capable of protecting the human host from infection by dengue virus shortly after a mosquito bite. These findings have important implications for better understanding the early infection events of dengue virus and of other skin-penetrating pathogens.
doi:10.1371/journal.pntd.0000311
PMCID: PMC2553280  PMID: 18827881
7.  Characterization of a Structural Intermediate of Flavivirus Membrane Fusion 
PLoS Pathogens  2007;3(2):e20.
Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.
Author Summary
The fusion of cellular lipid membranes is an essential process in all forms of life. Such membranes are also part of a specific structural class of viruses—so-called enveloped viruses—that include influenza virus, HIV, severe acute respiratory syndrome coronavirus, Ebola virus, yellow fever virus, and many others. The fusion of the viral with a cellular membrane is a key step in the life cycle of these viruses and allows the delivery of their genetic information into cells. This entry step is controlled by specific proteins at the viral surface that are primed to undergo dramatic structural changes and thus drive membrane fusion. An interference with this process can be a powerful means for inhibiting virus replication and fusion inhibitors have recently become a valuable addition to the armamentarium of anti-HIV treatments. In the present study, we identified an intermediate of the fusion pathway of flaviviruses, which comprise mosquito- and tick-transmitted viruses such as yellow fever, dengue, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. This work has generated further insights into the mechanism of flavivirus membrane fusion and can thus provide new leads for the development of antiviral agents against these important human pathogens.
doi:10.1371/journal.ppat.0030020
PMCID: PMC1797619  PMID: 17305426
8.  Genome Microevolution of Chikungunya Viruses Causing the Indian Ocean Outbreak 
PLoS Medicine  2006;3(7):e263.
Background
A chikungunya virus outbreak of unprecedented magnitude is currently ongoing in Indian Ocean territories. In Réunion Island, this alphavirus has already infected about one-third of the human population. The main clinical symptom of the disease is a painful and invalidating poly-arthralgia. Besides the arthralgic form, 123 patients with a confirmed chikungunya infection have developed severe clinical signs, i.e., neurological signs or fulminant hepatitis.
Methods and Findings
We report the nearly complete genome sequence of six selected viral isolates (isolated from five sera and one cerebrospinal fluid), along with partial sequences of glycoprotein E1 from a total of 127 patients from Réunion, Seychelles, Mauritius, Madagascar, and Mayotte islands. Our results indicate that the outbreak was initiated by a strain related to East-African isolates, from which viral variants have evolved following a traceable microevolution history. Unique molecular features of the outbreak isolates were identified. Notably, in the region coding for the non-structural proteins, ten amino acid changes were found, four of which were located in alphavirus-conserved positions of nsP2 (which contains helicase, protease, and RNA triphosphatase activities) and of the polymerase nsP4. The sole isolate obtained from the cerebrospinal fluid showed unique changes in nsP1 (T301I), nsP2 (Y642N), and nsP3 (E460 deletion), not obtained from isolates from sera. In the structural proteins region, two noteworthy changes (A226V and D284E) were observed in the membrane fusion glycoprotein E1. Homology 3D modelling allowed mapping of these two changes to regions that are important for membrane fusion and virion assembly. Change E1-A226V was absent in the initial strains but was observed in >90% of subsequent viral sequences from Réunion, denoting evolutionary success possibly due to adaptation to the mosquito vector.
Conclusions
The unique molecular features of the analyzed Indian Ocean isolates of chikungunya virus demonstrate their high evolutionary potential and suggest possible clues for understanding the atypical magnitude and virulence of this outbreak.
Viral genome sequence isolated from 6 patients and partial sequences of isolates from 121 patients at different stages and locations of the outbreak reveals unique and evolving genetic features.
doi:10.1371/journal.pmed.0030263
PMCID: PMC1463904  PMID: 16700631
9.  Structural Analysis of the Hepatitis C Virus RNA Polymerase in Complex with Ribonucleotides 
Journal of Virology  2002;76(7):3482-3492.
We report here the results of a systematic high-resolution X-ray crystallographic analysis of complexes of the hepatitis C virus (HCV) RNA polymerase with ribonucleoside triphosphates (rNTPs) and divalent metal ions. An unexpected observation revealed by this study is the existence of a specific rGTP binding site in a shallow pocket at the molecular surface of the enzyme, 30 Å away from the catalytic site. This previously unidentified rGTP pocket, which lies at the interface between fingers and thumb, may be an allosteric regulatory site and could play a role in allowing alternative interactions between the two domains during a possible conformational change of the enzyme required for efficient initiation. The electron density map at 1.7-Å resolution clearly shows the mode of binding of the guanosine moiety to the enzyme. In the catalytic site, density corresponding to the triphosphates of nucleotides bound to the catalytic metals was apparent in each complex with nucleotides. Moreover, a network of triphosphate densities was detected; these densities superpose to the corresponding moieties of the nucleotides observed in the initiation complex reported for the polymerase of bacteriophage φ6, strengthening the proposal that the two enzymes initiate replication de novo by similar mechanisms. No equivalent of the protein stacking platform observed for the priming nucleotide in the φ6 enzyme is present in HCV polymerase, however, again suggesting that a change in conformation of the thumb domain takes place upon template binding to allow for efficient de novo initiation of RNA synthesis.
doi:10.1128/JVI.76.7.3482-3492.2002
PMCID: PMC136026  PMID: 11884572
10.  Dengue Virus Type 1 Nonstructural Glycoprotein NS1 Is Secreted from Mammalian Cells as a Soluble Hexamer in a Glycosylation-Dependent Fashion 
Journal of Virology  1999;73(7):6104-6110.
Nonstructural glycoprotein NS1, specified by dengue virus type 1 (Den-1), is secreted from infected green monkey kidney (Vero) cells in a major soluble form characterized by biochemical and biophysical means as a unique hexameric species. This noncovalently bound oligomer is formed by three dimeric subunits and has a molecular mass of 310 kDa and a Stokes radius of 64.4 Å. During protein export, one of the two oligosaccharides of NS1 is processed into an endo-β-N-acetylglucosaminidase F-resistant complex-type sugar while the other remains of the polymannose type, protected in the dimeric subunit from the action of maturation enzymes. Complete processing of the complex-type sugar appears to be required for efficient release of soluble NS1 into the culture fluid of infected cells, as suggested by the repressive effects of the N-glycan processing inhibitors swainsonine and deoxymannojyrimicin. These results, together with observations related to the absence of secretion of NS1 from Den-infected insect cells, suggest that maturation and secretion of hexameric NS1 depend on the glycosylation status of the host cell.
PMCID: PMC112675  PMID: 10364366
11.  Crystallization and Preliminary X-Ray Analysis of Rotavirus Protein VP6 
Journal of Virology  1998;72(9):7615-7619.
As a first step to gain insight into the structure of the rotavirus virion at atomic resolution, we report here the expression, purification, and crystallization of recombinant rotavirus protein VP6. This protein has the property of polymerizing in the form of tubular structures in solution which have hindered crystallization thus far. Using a combination of electron microscopy and small-angle X-ray scattering, we found that addition of Ca2+ at concentrations higher than 100 mM results in depolymerization of the tubes, leading to an essentially monodisperse solution of trimeric VP6 even at high protein concentrations (higher than 10 mg/ml), thereby enabling us to search for crystallization conditions. We have thus obtained crystals of VP6 which diffract to better than 2.4 Å resolution and belong to the cubic space group P4132 with a cell dimension a of 160 Å. The crystals contain a trimer of VP6 lying along the diagonal of the cubic unit cell, resulting in one VP6 monomer per asymmetric unit and a solvent content of roughly 70%.
PMCID: PMC110019  PMID: 9696863

Results 1-11 (11)