PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Expression, purification, crystallization and preliminary X-ray analysis of Plasmodium falciparum GTP:AMP phosphotransferase 
P. falciparum GTP:AMP phosphotransferase was expressed in E. coli, purified and crystallized. An X-ray diffraction data set was collected to a resolution of 2.90 Å.
Adenylate kinases (AKs) are phosphotransferase enzymes that catalyze the interconversion of adenine nucleotides, thereby playing an important role in energy metabolism. In Plasmodium falciparum, three AK isoforms, namely PfAK1, PfAK2 and GTP:AMP phosphotransferase (PfGAK), have been identified. While PfAK1 and PfAK2 catalyse the conversion of ATP and AMP to two molecules of ADP, PfGAK exhibits a substrate preference for GTP and AMP and does not accept ATP as a substrate. PfGAK was cloned and expressed in Escherichia coli and purified using two-step chromatography. Brown hexagonal crystals of PfGAK were obtained and a preliminary diffraction analysis was performed. X-ray diffraction data for a single PfGAK crystal were processed to 2.9 Å resolution in space group P3121 or P3221, with unit-cell parameters a = b = 123.49, c = 180.82 Å, α = β = 90, γ = 120°.
doi:10.1107/S1744309112015862
PMCID: PMC3370907  PMID: 22684067
GTP:AMP phosphotransferase; Plasmodium falciparum; adenylate kinases
2.  Conformational Flexibility of the Dengue Virus RNA-Dependent RNA Polymerase Revealed by a Complex with an Inhibitor 
Journal of Virology  2013;87(9):5291-5295.
We report a highly reproducible method to crystallize the RNA-dependent RNA polymerase (RdRp) domain of dengue virus serotype 3 (DENV-3), allowing structure refinement to a 1.79-Å resolution and revealing amino acids not seen previously. We also present a DENV-3 polymerase/inhibitor cocrystal structure at a 2.1-Å resolution. The inhibitor binds to the RdRp as a dimer and causes conformational changes in the protein. The improved crystallization conditions and new structural information should accelerate structure-based drug discovery.
doi:10.1128/JVI.00045-13
PMCID: PMC3624333  PMID: 23408636
3.  Structural Insights into Substrate Binding by PvFKBP35, a Peptidylprolyl cis-trans Isomerase from the Human Malarial Parasite Plasmodium vivax 
Eukaryotic Cell  2013;12(4):627-634.
The immunosuppressive drug FK506 binding proteins (FKBPs), an immunophilin family with the immunosuppressive drug FK506 binding property, exhibit peptidylprolyl cis-trans isomerase (PPIase) activity. While the cyclophilin-catalyzed peptidylprolyl isomerization of X-Pro peptide bonds has been extensively studied, the mechanism of the FKBP-mediated peptidylprolyl isomerization remains uncharacterized. Thus, to investigate the binding of FKBP with its substrate and the underlying catalytic mechanism of the FKBP-mediated proline isomerization, here we employed the FK506 binding domain (FKBD) of the human malarial parasite Plasmodium vivax FK506 binding protein 35 (PvFKBP35) and examined the details of the molecular interaction between the isomerase and a peptide substrate. The crystallographic structures of apo PvFKBD35 and its complex with the tetrapeptide substrate succinyl-Ala-Leu-Pro-Phe-p-nitroanilide (sALPFp) determined at 1.4 Å and 1.65 Å resolutions, respectively, showed that the substrate binds to PvFKBD35 in a cis conformation. Nuclear magnetic resonance (NMR) studies demonstrated the chemical shift perturbations of D55, H67, V73, and I74 residues upon the substrate binding. In addition, the X-ray crystal structure, along with the mutational studies, shows that Y100 is a key residue for the catalytic activity. Taken together, our results provide insights into the catalytic mechanism of PvFKBP35-mediated cis-trans isomerization of substrate and ultimately might aid designing substrate mimetic inhibitors targeting the malarial parasite FKBPs.
doi:10.1128/EC.00016-13
PMCID: PMC3623434  PMID: 23435727
4.  Substrate Channel Flexibility in Pseudomonas aeruginosa MurB Accommodates Two Distinct Substrates 
PLoS ONE  2013;8(6):e66936.
Biosynthesis of UDP-N-acetylmuramic acid in bacteria is a committed step towards peptidoglycan production. In an NADPH- and FAD-dependent reaction, the UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) reduces UDP-N-acetylglucosamine-enolpyruvate to UDP-N-acetylmuramic acid. We determined the three-dimensional structures of the ternary complex of Pseudomonas aeruginosa MurB with FAD and NADP+ in two crystal forms to resolutions of 2.2 and 2.1 Å, respectively, to investigate the structural basis of the first half-reaction, hydride transfer from NADPH to FAD. The nicotinamide ring of NADP+ stacks against the si face of the isoalloxazine ring of FAD, suggesting an unusual mode of hydride transfer to flavin. Comparison with the structure of the Escherichia coli MurB complex with UDP-N-acetylglucosamine-enolpyruvate shows that both substrates share the binding site located between two lobes of the substrate-binding domain III, consistent with a ping pong mechanism with sequential substrate binding. The nicotinamide and the enolpyruvyl moieties are strikingly well-aligned upon superimposition, both positioned for hydride transfer to and from FAD. However, flexibility of the substrate channel allows the non-reactive parts of the two substrates to bind in different conformations. A potassium ion in the active site may assist in substrate orientation and binding. These structural models should help in structure-aided drug design against MurB, which is essential for cell wall biogenesis and hence bacterial survival.
doi:10.1371/journal.pone.0066936
PMCID: PMC3689657  PMID: 23805286
5.  Crystallization and diffraction analysis of the SARS coronavirus nsp10–nsp16 complex 
The expression, purification and crystallization of the SARS coronavirus nsp16 RNA-cap AdoMet-dependent (nucleoside-2′O)-methyltransferase in complex with its activating factor nsp10 are reported.
To date, the SARS coronavirus is the only known highly pathogenic human coronavirus. In 2003, it was responsible for a large outbreak associated with a 10% fatality rate. This positive RNA virus encodes a large replicase polyprotein made up of 16 gene products (nsp1–16), amongst which two methyltransferases, nsp14 and nsp16, are involved in viral mRNA cap formation. The crystal structure of nsp16 is unknown. Nsp16 is an RNA-cap AdoMet-dependent (nucleoside-2′-O-)-methyltransferase that is only active in the presence of nsp10. In this paper, the expression, purification and crystallization of nsp10 in complex with nsp16 are reported. The crystals diffracted to a resolution of 1.9 Å resolution and crystal structure determination is in progress.
doi:10.1107/S1744309111002867
PMCID: PMC3053173  PMID: 21393853
SARS coronavirus; nsp10; nsp16
6.  Structural Insights into the Regulatory Mechanism of the Response Regulator RocR from Pseudomonas aeruginosa in Cyclic Di-GMP Signaling 
Journal of Bacteriology  2012;194(18):4837-4846.
The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from Pseudomonas aeruginosa to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations. Subunits A and B adopt a conformation with the REC domain located above the c-di-GMP binding pocket, whereas subunits C and D adopt an open conformation with the REC domain swung to the side of the EAL domain. Remarkably, the access to the substrate-binding pockets of the EAL domains of the open subunits C and D are blocked in trans by the REC domains of subunits A and B, indicating that only two of the four active sites are engaged in the degradation of c-di-GMP. In conjunction with biochemical and biophysical data, we propose that the structural changes within the REC domains triggered by the phosphorylation are transmitted to the EAL domain active sites through a pathway that traverses the dimerization interfaces composed of a conserved regulatory loop and the neighboring motifs. This exquisite mechanism reinforces the crucial role of the regulatory loop and suggests that similar regulatory mechanisms may be operational in many EAL domain proteins, considering the preservation of the dimerization interface and the spatial arrangement of the regulatory domains.
doi:10.1128/JB.00560-12
PMCID: PMC3430337  PMID: 22753070
7.  Expression, purification and preliminary crystallographic analysis of Pseudomonas aeruginosa RocR protein 
P. aeruginosa RocR, an EAL-domain protein, has been expressed in E. coli, purified and crystallized. An X-ray diffraction data set was collected to a resolution of 2.50 Å.
Pseudomonas aeruginosa RocR, an EAL-domain protein which regulates the expression of virulence genes and biofilm formation, has been cloned and expressed in Escherichia coli and purified. Here, the crystallization and preliminary diffraction analysis of RocR are reported. The X-ray diffraction data were processed to a resolution of 2.50 Å. The crystals belonged to space group P6122 or P6522, with unit-cell parameters a = 118.8, b = 118.8, c = 495.1 Å, α = β = 90, γ = 120°.
doi:10.1107/S1744309109034526
PMCID: PMC2765895  PMID: 19851016
RocR; EAL-domain proteins; Pseudomonas aeruginosa
8.  Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex 
PLoS Pathogens  2011;7(5):e1002059.
Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2′-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Å resolution, which shows nsp10 bound to nsp16 through a ∼930 Å2 surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses.
Author Summary
A novel coronavirus emerged in 2003 and was identified as the etiological agent of the deadly disease called Severe Acute Respiratory Syndrome. This coronavirus replicates and transcribes its giant genome using sixteen non-structural proteins (nsp1-16). Viral RNAs are capped to ensure stability, efficient translation, and evading the innate immunity system of the host cell. The nsp16 protein is a RNA cap modifying enzyme only active in the presence of its activating partner nsp10. We have crystallized the nsp10/16 complex and report its crystal structure at atomic resolution. Nsp10 binds to nsp16 through a ∼930 Å2 activation surface area in nsp10, and the resulting complex exhibits RNA cap (nucleoside-2′-O)-methyltransferase activity. We have performed mutational and functional assays to identify key residues involved in catalysis and/or in RNA binding, and in the association of nsp10 to nsp16. We present two additional crystal structures, that of the known inhibitor Sinefungin bound in the SAM binding pocket, and that of a tighter complex made of the mutant nsp10(Y96F) bound to nsp16. Our study provides a basis for antiviral drug design as well as the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses.
doi:10.1371/journal.ppat.1002059
PMCID: PMC3102710  PMID: 21637813
9.  The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes 
PLoS Pathogens  2011;7(5):e1002030.
Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs.
Author Summary
The Rift Valley fever virus (RVFV), a negative strand RNA virus spread by infected mosquitoes, affects livestock and humans who can develop a severe disease. We studied the structure of its nucleoprotein (N), which forms a filamentous coat that protects the viral RNA genome and is also required for RNA replication and transcription by the polymerase of the virus. We report the structure of the RVFV N protein at 1.6 Å resolution, which reveals hexameric rings with an external diameter of 100 Å that are formed by exchanges of N-terminal arms between the nearest neighbors. Electron microscopy of recombinant protein in complex with RNA shows that N also forms rings in solution. A reconstruction of the hexameric ring at 25 Å resolution is consistent with the hexamer structure determined by crystallography. We propose that slight structural variations would suffice to convert a ring-shaped oligomer into subunits with a super-helical arrangement and that this mode of protein-protein association forms the basis for the formation of filamentous ribonucleocapsids by this virus family. Both the RNA binding cleft and the multimerization site of the N protein can be targeted for the development of drugs against RVFV.
doi:10.1371/journal.ppat.1002030
PMCID: PMC3093367  PMID: 21589902
11.  Crystal Structure of the Dengue Virus Methyltransferase Bound to a 5′-Capped Octameric RNA 
PLoS ONE  2010;5(9):e12836.
The N-terminal domain of the flavivirus NS5 protein functions as a methyltransferase (MTase). It sequentially methylates the N7 and 2′-O positions of the viral RNA cap structure (GpppA→7meGpppA→7meGpppA2′-O-me). The same NS5 domain could also have a guanylyltransferase activity (GTP+ppA-RNA→GpppA). The mechanism by which this protein domain catalyzes these three distinct functions is currently unknown. Here we report the crystallographic structure of DENV-3 MTase in complex with a 5′-capped RNA octamer (GpppAGAACCUG) at a resolution of 2.9 Å. Two RNA octamers arranged as kissing loops are encircled by four MTase monomers around a 2-fold non-crystallography symmetry axis. Only two of the four monomers make direct contact with the 5′ end of RNA. The RNA structure is stabilised by the formation of several intra and intermolecular base stacking and non-canonical base pairs. The structure may represent the product of guanylylation of the viral genome prior to the subsequent methylation events that require repositioning of the RNA substrate to reach to the methyl-donor sites. The crystal structure provides a structural explanation for the observed trans-complementation of MTases with different methylation defects.
doi:10.1371/journal.pone.0012836
PMCID: PMC2941465  PMID: 20862256
12.  The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription 
PLoS Pathogens  2010;6(9):e1001038.
Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease.
Author Summary
The Arenaviridae virus family includes several life-threatening human pathogens that cause meningitis or hemorrhagic fever. These RNA viruses replicate and transcribe their genome using an RNA synthesis machinery for which no structural data currently exist. They synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism thought to involve the large L protein, which carries RNA-dependent RNA polymerase signature sequences. Here, we report the crystal structure and functional characterization of an isolated N-terminal domain of the L protein (NL1) from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures and mutagenesis studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. Reverse genetic studies show that mutation of active site residues selectively abolish transcription, not replication. We show that this endonuclease domain is conserved and active across the virus families: Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease.
doi:10.1371/journal.ppat.1001038
PMCID: PMC2940758  PMID: 20862324
13.  On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes 
The Journal of General Virology  2009;90(Pt 4):799-809.
The flavivirus envelope glycoprotein (E) is responsible for viral attachment and entry by membrane fusion. Its ectodomain is the primary target of the humoral immune response. In particular, the C-terminal Ig-like domain III of E, which is exposed at the surface of the viral particle, forms an attractive antigen for raising protective monoclonal antibodies (mAb). 9F12, a mouse mAb raised against a dengue virus (DENV) serotype 2 recombinant domain III, cross-reacts with corresponding domains from the other three DENV serotypes and also with West Nile virus. mAb 9F12 binds with nanomolar affinity to a conserved epitope that maps to the viral surface comprising residues 305, 307, 310 and 330 of the E protein. mAb 9F12 neutralizes all four DENV serotypes in plaque reduction assays. We expressed a single-chain Fv from 9F12 that retains the binding activity of the parent mAb. Adsorption and fusion inhibition assays indicate that mAb 9F12 prevents early steps of viral entry. Its virus inhibition activity and broad cross-reactivity makes mAb 9F12 a suitable candidate for optimization and humanization into a therapeutic antibody to treat severe infections by dengue.
doi:10.1099/vir.0.006874-0
PMCID: PMC2889437  PMID: 19264660
14.  The Functional Role of a Conserved Loop in EAL Domain-Based Cyclic di-GMP-Specific Phosphodiesterase ▿ †  
Journal of Bacteriology  2009;191(15):4722-4731.
EAL domain-based cyclic di-GMP (c-di-GMP)-specific phosphodiesterases play important roles in bacteria by regulating the cellular concentration of the dinucleotide messenger c-di-GMP. EAL domains belong to a family of (β/α)8 barrel fold enzymes that contain a functional active site loop (loop 6) for substrate binding and catalysis. By examining the two EAL domain-containing proteins RocR and PA2567 from Pseudomonas aeruginosa, we found that the catalytic activity of the EAL domains was significantly altered by mutations in the loop 6 region. The impact of the mutations ranges from apparent substrate inhibition to alteration of oligomeric structure. Moreover, we found that the catalytic activity of RocR was affected by mutating the putative phosphorylation site (D56N) in the phosphoreceiver domain, with the mutant exhibiting a significantly smaller Michealis constant (Km) than that of the wild-type RocR. Hydrogen-deuterium exchange by mass spectrometry revealed that the decrease in Km correlates with a change of solvent accessibility in the loop 6 region. We further examined Acetobacter xylinus diguanylate cyclase 2, which is one of the proteins that contains a catalytically incompetent EAL domain with a highly degenerate loop 6. We demonstrated that the catalytic activity of the stand-alone EAL domain toward c-di-GMP could be recovered by restoring loop 6. On the basis of these observations and in conjunction with the structural data of two EAL domains, we proposed that loop 6 not only mediates the dimerization of EAL domain but also controls c-di-GMP and Mg2+ ion binding. Importantly, sequence analysis of the 5,862 EAL domains in the bacterial genomes revealed that about half of the EAL domains harbor a degenerate loop 6, indicating that the mutations in loop 6 may represent a divergence of function for EAL domains during evolution.
doi:10.1128/JB.00327-09
PMCID: PMC2715702  PMID: 19376848
15.  The Crystal Structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 Macro Domains Define a Conserved Adenosine Binding Pocket ▿  
Journal of Virology  2009;83(13):6534-6545.
Macro domains (also called “X domains”) constitute a protein module family present in all kingdoms of life, including viruses of the Coronaviridae and Togaviridae families. Crystal structures of the macro domain from the Chikungunya virus (an “Old World” alphavirus) and the Venezuelan equine encephalitis virus (a “New World” alphavirus) were determined at resolutions of 1.65 and 2.30 Å, respectively. These domains are active as adenosine di-phosphoribose 1″-phosphate phosphatases. Both the Chikungunya and the Venezuelan equine encephalitis virus macro domains are ADP-ribose binding modules, as revealed by structural and functional analysis. A single aspartic acid conserved through all macro domains is responsible for the specific binding of the adenine base. Sequence-unspecific binding to long, negatively charged polymers such as poly(ADP-ribose), DNA, and RNA is observed and attributed to positively charged patches outside of the active site pocket, as judged by mutagenesis and binding studies. The crystal structure of the Chikungunya virus macro domain with an RNA trimer shows a binding mode utilizing the same adenine-binding pocket as ADP-ribose, but avoiding the ADP-ribose 1″-phosphate phosphatase active site. This leaves the AMP binding site as the sole common feature in all macro domains.
doi:10.1128/JVI.00189-09
PMCID: PMC2698539  PMID: 19386706
16.  Crystallographic structure of ubiquitin in complex with cadmium ions 
BMC Research Notes  2009;2:251.
Background
Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains.
Findings
We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface.
Conclusions
The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.
doi:10.1186/1756-0500-2-251
PMCID: PMC2804574  PMID: 20003470
17.  A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution 
Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program.
Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.
doi:10.1107/S1744309106055084
PMCID: PMC2330120  PMID: 17277444
dengue; flaviviruses; RNA-dependent RNA polymerases
18.  The C-Terminal Segment of the Cysteine-Rich Interdomain of Plasmodium falciparum Erythrocyte Membrane Protein 1 Determines CD36 Binding and Elicits Antibodies That Inhibit Adhesion of Parasite-Infected Erythrocytes▿  
Infection and Immunity  2008;76(5):1837-1847.
Attachment of erythrocytes infected by Plasmodium falciparum to receptors of the microvasculature is a major contributor to the pathology and morbidity associated with malaria. Adhesion is mediated by the P. falciparum erythrocyte membrane protein 1 (PfEMP-1), which is expressed at the surface of infected erythrocytes and is linked to both antigenic variation and cytoadherence. PfEMP-1 contains multiple adhesive modules, including the Duffy binding-like domain and the cysteine-rich interdomain region (CIDR). The interaction between CIDRα and CD36 promotes stable adherence of parasitized erythrocytes to endothelial cells. Here we show that a segment within the C-terminal region of CIDRα determines CD36 binding specificity. Antibodies raised against this segment can specifically block the adhesion to CD36 of erythrocytes infected with various parasite strains. Thus, small regions of PfEMP-1 that determine binding specificity could form suitable components of an antisequestration malaria vaccine effective against different parasite strains.
doi:10.1128/IAI.00480-07
PMCID: PMC2346709  PMID: 18299339
19.  Antibodies Targeting the PfRH1 Binding Domain Inhibit Invasion of Plasmodium falciparum Merozoites 
PLoS Pathogens  2008;4(7):e1000104.
Invasion by the malaria merozoite depends on recognition of specific erythrocyte surface receptors by parasite ligands. Plasmodium falciparum uses multiple ligands, including at least two gene families, reticulocyte binding protein homologues (RBLs) and erythrocyte binding proteins/ligands (EBLs). The combination of different RBLs and EBLs expressed in a merozoite defines the invasion pathway utilized and could also play a role in parasite virulence. The binding regions of EBLs lie in a conserved cysteine-rich domain while the binding domain of RBL is still not well characterized. Here, we identify the erythrocyte binding region of the P. falciparum reticulocyte binding protein homologue 1 (PfRH1) and show that antibodies raised against the functional binding region efficiently inhibit invasion. In addition, we directly demonstrate that changes in the expression of RBLs can constitute an immune evasion mechanism of the malaria merozoite.
Author Summary
Plasmodium falciparum causes the most virulent form of human malaria. The pathology of the disease is associated with the invasion, replication and subsequent destruction of the erythrocyte by the parasite. Invasion of the host erythrocyte by the invasive form of the parasite, the merozoite, is a key step involving the interaction of several parasite ligands with receptors on the host cell surface. A better understanding of the molecular basis for these interactions is crucial for developing effective strategies to reduce morbidity and mortality due to malaria. Members of the RBLs and EBLs are found in all Plasmodium spp. so far analyzed and play an important role in parasite virulence, host cell selection and possibly immune evasion. How binding of EBLs or RBLs to specific erythrocyte receptors ultimately leads to merozoite invasion is an important question that requires the parasite ligand to be dissected into functional domains. Here, we show that a relatively small region of the PfRH1 molecule is involved in receptor recognition. Only parasites that utilize a sialic acid–dependent invasion pathway are inhibited by antiserum raised against the minimal binding region. In addition, switching of the invasion pathway from a sialic acid–dependent to a sialic acid–independent pathway renders the inhibitory antibodies ineffective with a concomitant reduction in the amount of PfRH1 expressed. This demonstrates that invasion pathway switching in P. falciparum can also serve as a mechanism of immune evasion.
doi:10.1371/journal.ppat.1000104
PMCID: PMC2438614  PMID: 18617995
20.  Crystal Structure of the NS3 Protease-Helicase from Dengue Virus▿  
Journal of Virology  2007;82(1):173-183.
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 Å. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.
doi:10.1128/JVI.01788-07
PMCID: PMC2224403  PMID: 17942558
21.  Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer 
An orthorhombic crystal form of the SARS CoV main proteinase diffracting to a resolution of 1.9 Å is reported. The conformation of residues in the catalytic site indicates an active enzyme.
The 34 kDa main proteinase (Mpro) from the severe acute respiratory syndrome coronavirus (SARS-CoV) plays an important role in the virus life cycle through the specific processing of viral polyproteins. As such, SARS-CoV Mpro is a key target for the identification of specific inhibitors directed against the SARS virus. With a view to facilitating the development of such compounds, crystals were obtained of the enzyme at pH 6.5 in the orthorhombic space group P21212 that diffract to a resolution of 1.9 Å. These crystals contain one monomer per asymmetric unit and the biologically active dimer is generated via the crystallographic twofold axis. The conformation of the catalytic site indicates that the enzyme is active in the crystalline form and thus suitable for structure-based inhibition studies.
doi:10.1107/S1744309105033257
PMCID: PMC1978130  PMID: 16511208
protease; crystallographic dimer; SARS coronavirus
22.  Crystal Structure of the Dengue Virus RNA-Dependent RNA Polymerase Catalytic Domain at 1.85-Angstrom Resolution▿  
Journal of Virology  2007;81(9):4753-4765.
Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-Å resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.
doi:10.1128/JVI.02283-06
PMCID: PMC1900186  PMID: 17301146
23.  Structure-Based Mutational Analysis of the NS3 Helicase from Dengue Virus 
Journal of Virology  2006;80(13):6686-6690.
We performed a mutational analysis of the NS3 helicase of dengue virus to test insights gleaned from its crystal structure and identified four residues in the full-length protein that severely impaired either its RTPase and ATPase (Arg-457-458, Arg-460, Arg-463) or helicase (Ile-365, Arg-376) activity. Alanine substitution of Lys-396, which is located at the surface of domain II, drastically reduced all three enzymatic activities. Our study points to a pocket at the surface of domain II that may be suitable for the design of allosteric inhibitors.
doi:10.1128/JVI.02215-05
PMCID: PMC1488930  PMID: 16775356
24.  X-Ray Structures of the N- and C-Terminal Domains of a Coronavirus Nucleocapsid Protein: Implications for Nucleocapsid Formation 
Journal of Virology  2006;80(13):6612-6620.
Coronaviruses cause a variety of respiratory and enteric diseases in animals and humans including severe acute respiratory syndrome. In these enveloped viruses, the filamentous nucleocapsid is formed by the association of nucleocapsid (N) protein with single-stranded viral RNA. The N protein is a highly immunogenic phosphoprotein also implicated in viral genome replication and in modulating cell signaling pathways. We describe the structure of the two proteolytically resistant domains of the N protein from infectious bronchitis virus (IBV), a prototype coronavirus. These domains are located at its N- and C-terminal ends (NTD and CTD, respectively). The NTD of the IBV Gray strain at 1.3-Å resolution exhibits a U-shaped structure, with two arms rich in basic residues, providing a module for specific interaction with RNA. The CTD forms a tightly intertwined dimer with an intermolecular four-stranded central β-sheet platform flanked by α helices, indicating that the basic building block for coronavirus nucleocapsid formation is a dimeric assembly of N protein. The variety of quaternary arrangements of the NTD and CTD revealed by the analysis of the different crystal forms delineates possible interfaces that could be used for the formation of a flexible filamentous ribonucleocapsid. The striking similarity between the dimeric structure of CTD and the nucleocapsid-forming domain of a distantly related arterivirus indicates a conserved mechanism of nucleocapsid formation for these two viral families.
doi:10.1128/JVI.00157-06
PMCID: PMC1488953  PMID: 16775348
25.  Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells 
Nucleic Acids Research  2006;34(17):4816-4825.
The N-terminal domain of the coronavirus nucleocapsid (N) protein adopts a fold resembling a right hand with a flexible, positively charged β-hairpin and a hydrophobic palm. This domain was shown to interact with the genomic RNA for coronavirus infectious bronchitis virus (IBV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Based on its 3D structure, we used site-directed mutagenesis to identify residues essential for the RNA-binding activity of the IBV N protein and viral infectivity. Alanine substitution of either Arg-76 or Tyr-94 in the N-terminal domain of IBV N protein led to a significant decrease in its RNA-binding activity and a total loss of the infectivity of the viral RNA to Vero cells. In contrast, mutation of amino acid Gln-74 to an alanine, which does not affect the binding activity of the N-terminal domain, showed minimal, if any, detrimental effect on the infectivity of IBV. This study thus identifies residues critical for RNA binding on the nucleocapsid surface, and presents biochemical and genetic evidence that directly links the RNA binding capacity of the coronavirus N protein to the viral infectivity in cultured cells. This information would be useful in development of preventive and treatment approaches against coronavirus infection.
doi:10.1093/nar/gkl650
PMCID: PMC1635287  PMID: 16971454

Results 1-25 (27)