PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (56)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Role of the C Terminus of Lassa Virus L Protein in Viral mRNA Synthesis 
Journal of Virology  2014;88(15):8713-8717.
The N terminus of arenavirus L protein contains an endonuclease presumably involved in “cap snatching.” Here, we employed the Lassa virus replicon system to map other L protein sites that might be involved in this mechanism. Residues Phe-1979, Arg-2018, Phe-2071, Asp-2106, Trp-2173, Tyr-2179, Arg-2200, and Arg-2204 were important for viral mRNA synthesis but dispensable for genome replication. Thus, the C terminus of L protein is involved in the mRNA synthesis process, potentially by mediating cap binding.
doi:10.1128/JVI.00652-14
PMCID: PMC4135956  PMID: 24829349
2.  Health Care Response to CCHF in US Soldier and Nosocomial Transmission to Health Care Providers, Germany, 2009 
Emerging Infectious Diseases  2015;21(1):23-31.
Early recognition and implementation of appropriate infection control measures were effective in preventing further transmission.
In 2009, a lethal case of Crimean–Congo hemorrhagic fever (CCHF), acquired by a US soldier in Afghanistan, was treated at a medical center in Germany and resulted in nosocomial transmission to 2 health care providers (HCPs). After his arrival at the medical center (day 6 of illness) by aeromedical evacuation, the patient required repetitive bronchoscopies to control severe pulmonary hemorrhage and renal and hepatic dialysis for hepatorenal failure. After showing clinical improvement, the patient died suddenly on day 11 of illness from cerebellar tonsil herniation caused by cerebral/cerebellar edema. The 2 infected HCPs were among 16 HCPs who received ribavirin postexposure prophylaxis. The infected HCPs had mild or no CCHF symptoms. Transmission may have occurred during bag-valve-mask ventilation, breaches in personal protective equipment during resuscitations, or bronchoscopies generating infectious aerosols. This case highlights the critical care and infection control challenges presented by severe CCHF cases, including the need for experience with ribavirin treatment and postexposure prophylaxis.
doi:10.3201/eid2101.141413
PMCID: PMC4285246  PMID: 25529825
viral hemorrhagic fever; Crimean–Congo hemorrhagic Crimean–Congo hemorrhagic fever virus; fever; ribavirin; infection control; prophylaxis; CCHF; nosocomial infection; viruses; US soldier; health care providers; Germany
3.  Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014 
Viruses  2014;6(11):4760-4799.
In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: “Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures.
doi:10.3390/v6114760
PMCID: PMC4246247  PMID: 25421896
Ebola; Ebola virus; ebolavirus; filovirid; Filoviridae; filovirus; genome annotation; Lomela; Lokolia; Makona; mononegavirad; Mononegavirales; mononegavirus; virus classification; virus isolate; virus nomenclature; virus strain; virus taxonomy; virus variant
4.  O’nyong-nyong Virus Infection Imported to Europe from Kenya by a Traveler 
Emerging Infectious Diseases  2014;20(10):1766-1767.
doi:10.3201/eid2010.140823
PMCID: PMC4193281  PMID: 25271361
O’nyong-nyong, viruses, Kenya, Germany, mosquito, PCR; Chikungunya
5.  Dengue Virus Transmission by Blood Stem Cell Donor after Travel to Sri Lanka; Germany, 2013 
Emerging Infectious Diseases  2014;20(8):1366-1369.
Three days after donation of peripheral blood stem cells to a recipient with acute myeloblastic leukemia, dengue virus was detected in the donor, who had recently traveled to Sri Lanka. Transmission to the recipient, who died 9 days after transplant, was confirmed.
doi:10.3201/eid2008.140508
PMCID: PMC4111198  PMID: 25062084
Dengue; viruses; RNA; Flaviviridae; arthropod; mosquito; vectorborne; blood; stem cell; donor; transplant; fatal; PCR; Germany; Sri Lanka
6.  Genome Analysis of Mayaro Virus Imported to Germany from French Guiana 
Emerging Infectious Diseases  2014;20(7):1255-1257.
doi:10.3201/eid2007.140043
PMCID: PMC4073840  PMID: 24960052
Mayaro virus; viruses; genome analysis; travel; Germany; French Guiana
7.  Evaluation of Antiviral Efficacy of Ribavirin, Arbidol, and T-705 (Favipiravir) in a Mouse Model for Crimean-Congo Hemorrhagic Fever 
Background
Mice lacking the type I interferon receptor (IFNAR−/− mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR−/− mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus.
Methodology/Principal Findings
CCHF virus-infected IFNAR−/− mice died 2–6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6–2.8 µg/ml; IC90 1.2–4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR−/− mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects.
Conclusions/Significance
Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.
Author Summary
Crimean-Congo hemorrhagic fever (CCHF) is endemic in Africa, Asia, southeast Europe, and the Middle East. The case fatality rate is 30–50%. Studies on pathophysiology and treatment of CCHF have been hampered by the lack of an appropriate animal model. We have employed CCHF virus-infected transgenic mice, which are defective in the innate immune response, as a disease model. These mice die from the infection and show signs of disease similar to those found in humans. First, we studied the liver pathology in the animals, as hepatic necrosis is a prominent feature of human CCHF. Secondly, we used the model to test the efficacy of antiviral drugs that are in clinical use or in an advanced stage of clinical testing. Besides ribavirin, the standard drug for treatment of CCHF, we tested arbidol, a drug in clinical use against respiratory infections, and T-705, a new drug in clinical development for the treatment of influenza virus infection. While ribavirin and arbidol showed some or no beneficial effect, respectively, T-705 was highly efficacious in the animal model. These data hold promise for clinical efficacy of T-705 in human CCHF.
doi:10.1371/journal.pntd.0002804
PMCID: PMC4006714  PMID: 24786461
8.  The N Terminus of Andes Virus L Protein Suppresses mRNA and Protein Expression in Mammalian Cells 
Journal of Virology  2013;87(12):6975-6985.
Little is known about the structure and function of the 250-kDa L protein of hantaviruses, although it plays a central role in virus genome transcription and replication. When attempting to study Andes virus (ANDV) L protein in mammalian cells, we encountered difficulties. Even in a strong overexpression system, ANDV L protein could not be detected by immunoblotting. Deletion analysis revealed that the 534 N-terminal amino acid residues determine the low-expression phenotype. Inhibition of translation due to RNA secondary structures around the start codon, rapid proteasomal degradation, and reduced half-life time were excluded. However, ANDV L protein expression could be rescued upon mutation of the catalytic PD-E-K motif and further conserved residues of the putative endonuclease at the N terminus of the protein. In addition, wild-type ANDV L rather than expressible L mutants suppressed the level of L mRNA, as well as reporter mRNAs. Wild-type L protein also reduced the synthesis of cellular proteins in the high-molecular-weight range. Using expressible ANDV L mutants as a tool for localization studies, we show that L protein colocalizes with ANDV N and NSs but not Gc protein. A fraction of L protein also colocalized with the cellular processing (P) body component DCP1a. Overall, these data suggest that ANDV L protein possesses a highly active endonuclease at the N terminus suppressing the level of its own as well as heterologous mRNAs upon recombinant expression in mammalian cells.
doi:10.1128/JVI.00043-13
PMCID: PMC3676134  PMID: 23576516
9.  Hospital-Based Surveillance for Viral Hemorrhagic Fevers and Hepatitides in Ghana 
Background
Viral hemorrhagic fevers (VHF) are acute diseases associated with bleeding, organ failure, and shock. VHF may hardly be distinguished clinically from other diseases in the African hospital, including viral hepatitis. This study was conducted to determine if VHF and viral hepatitis contribute to hospital morbidity in the Central and Northern parts of Ghana.
Methodology/Principal Findings
From 2009 to 2011, blood samples of 258 patients with VHF symptoms were collected at 18 hospitals in Ashanti, Brong-Ahafo, Northern, Upper West, and Upper East regions. Patients were tested by PCR for Lassa, Rift Valley, Crimean-Congo, Ebola/Marburg, and yellow fever viruses; hepatitis A (HAV), B (HBV), C (HCV), and E (HEV) viruses; and by ELISA for serological hepatitis markers. None of the patients tested positive for VHF. However, 21 (8.1%) showed anti-HBc IgM plus HBV DNA and/or HBsAg; 37 (14%) showed HBsAg and HBV DNA without anti-HBc IgM; 26 (10%) showed anti-HAV IgM and/or HAV RNA; and 20 (7.8%) were HCV RNA-positive. None was positive for HEV RNA or anti-HEV IgM plus IgG. Viral genotypes were determined as HAV-IB, HBV-A and E, and HCV-1, 2, and 4.
Conclusions/Significance
VHFs do not cause significant hospital morbidity in the study area. However, the incidence of acute hepatitis A and B, and hepatitis B and C with active virus replication is high. These infections may mimic VHF and need to be considered if VHF is suspected. The data may help decision makers to allocate resources and focus surveillance systems on the diseases of relevance in Ghana.
Author Summary
Ghana is endemic for yellow fever and lies between two Lassa fever endemic areas — Guinea, Liberia, Sierra Leone, and Mali in the West, and Nigeria in the East. Ebola hemorrhagic fever has been documented in the neighboring Cote d'Ivoire. Thus, it is plausible that the latter VHFs also occur in Ghana, and there have been rumors of cases, which present like VHF in the north of the country. Our study aimed at verifying or disproving this suspicion. At 18 hospital-based study sites in the Central and Northern part of the country, samples from 258 patients with VHF symptoms were collected and tested for various VHF by PCR. As viral hepatitis is an important differential diagnosis of yellow fever, we also tested for several serological and molecular hepatitis markers. Rather surprisingly, VHFs were not detected, indicating that, even if they are endemic in the North of Ghana, they do not significantly contribute to hospital morbidity. However, a large fraction of patients showed markers of acute hepatitis A, and active hepatitis B and C. Children were mainly affected by hepatitis A, while adults were affected by hepatitis B and C. Hepatitis A and B are vaccine-preventable, and chronic hepatitis B and C are treatable diseases. Further efforts are needed to reduce the burden of these diseases in Ghana.
doi:10.1371/journal.pntd.0002435
PMCID: PMC3777898  PMID: 24069490
10.  Infection of Type I Interferon Receptor-Deficient Mice with Various Old World Arenaviruses: A Model for Studying Virulence and Host Species Barriers 
PLoS ONE  2013;8(8):e72290.
Lassa virus causes hemorrhagic Lassa fever in humans, while the related Old World arenaviruses Mopeia, Morogoro, and Mobala are supposedly apathogenic to humans and cause only inapparent infection in non-human primates. Here, we studied whether the virulence of Old World arenaviruses in humans and non-human primates is reflected in type I interferon receptor deficient (IFNAR-/-) mice by testing several strains of Lassa virus vs. the apathogenic viruses Mopeia, Morogoro, and Mobala. All Lassa virus strains tested—Josiah, AV, BA366, and Nig04-10—replicated to high titers in blood, lung, kidney, heart, spleen, brain, and liver and caused disease as evidenced by weight loss and elevation of aspartate and alanine aminotransferase (AST and ALT) levels with a high AST/ALT ratio. Lassa fever-like pathology included acute hepatitis, interstitial pneumonia, and pronounced disturbance of splenic cytoarchitecture. Infiltrations of activated monocytes/macrophages expressing inducible nitric oxide synthase and T cells were found in liver and lung. In contrast, Mopeia, Morogoro, and Mobala virus replicated poorly in the animals and acute inflammatory alterations were not noted. Depletion of CD4+ and CD8+ T cells strongly enhanced susceptibility of IFNAR-/- mice to the apathogenic viruses. In conclusion, the virulence of Old World arenaviruses in IFNAR-/- mice correlates with their virulence in humans and non-human primates. In addition to the type I interferon system, T cells seem to regulate whether or not an arenavirus can productively infect non-host rodent species. The observation that Lassa virus overcomes the species barrier without artificial depletion of T cells suggests it is able to impair T cell functionality in a way that corresponds to depletion.
doi:10.1371/journal.pone.0072290
PMCID: PMC3750052  PMID: 23991083
11.  Rapid and Specific Detection of Lassa Virus by Reverse Transcription-PCR Coupled with Oligonucleotide Array Hybridization 
Journal of Clinical Microbiology  2012;50(7):2496-2499.
To facilitate sequence-specific detection of DNA amplified in a diagnostic reverse transcription (RT)-PCR for Lassa virus, we developed an array featuring 47 oligonucleotide probes for post-PCR hybridization of the amplicons. The array procedure may be performed with low-tech equipment and does not take longer than agarose gel detection.
doi:10.1128/JCM.00998-12
PMCID: PMC3405593  PMID: 22535985
12.  High Diversity of RNA Viruses in Rodents, Ethiopia 
Emerging Infectious Diseases  2012;18(12):2047-2050.
We investigated synanthropic small mammals in the Ethiopian Highlands as potential reservoirs for human pathogens and found that 2 rodent species, the Ethiopian white-footed mouse and Awash multimammate mouse, are carriers of novel Mobala virus strains. The white-footed mouse also carries a novel hantavirus, the second Murinae-associated hantavirus found in Africa.
doi:10.3201/eid1812.120596
PMCID: PMC3557881  PMID: 23171649
RNA; viruses; rodents; Ethiopia; hantavirus; arenaviruses; Mobala virus; Arenaviridae; murine; Murinae; bunyaviruses; Bunyaviridae; RNA viruses
13.  West Nile Virus Meningoencephalitis Imported into Germany 
Emerging Infectious Diseases  2012;18(10):1698-1700.
doi:10.3201/eid1810.120204
PMCID: PMC3471623  PMID: 23017806
West Nile virus; arbovirus; Germany; serology; viruses; vector-borne infections
14.  Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation 
Background
Lassa fever is a viral hemorrhagic fever endemic in West Africa. However, none of the hospitals in the endemic areas of Nigeria has the capacity to perform Lassa virus diagnostics. Case identification and management solely relies on non-specific clinical criteria. The Irrua Specialist Teaching Hospital (ISTH) in the central senatorial district of Edo State struggled with this challenge for many years.
Methodology/Principal Findings
A laboratory for molecular diagnosis of Lassa fever, complying with basic standards of diagnostic PCR facilities, was established at ISTH in 2008. During 2009 through 2010, samples of 1,650 suspected cases were processed, of which 198 (12%) tested positive by Lassa virus RT-PCR. No remarkable demographic differences were observed between PCR-positive and negative patients. The case fatality rate for Lassa fever was 31%. Nearly two thirds of confirmed cases attended the emergency departments of ISTH. The time window for therapeutic intervention was extremely short, as 50% of the fatal cases died within 2 days of hospitalization—often before ribavirin treatment could be commenced. Fatal Lassa fever cases were older (p = 0.005), had lower body temperature (p<0.0001), and had higher creatinine (p<0.0001) and blood urea levels (p<0.0001) than survivors. Lassa fever incidence in the hospital followed a seasonal pattern with a peak between November and March. Lassa virus sequences obtained from the patients originating from Edo State formed—within lineage II—a separate clade that could be further subdivided into three clusters.
Conclusions/Significance
Lassa fever case management was improved at a tertiary health institution in Nigeria through establishment of a laboratory for routine diagnostics of Lassa virus. Data collected in two years of operation demonstrate that Lassa fever is a serious public health problem in Edo State and reveal new insights into the disease in hospitalized patients.
Author Summary
In the past, diagnostic testing for Lassa fever patients in Nigeria has been performed nearly exclusively outside of the country. Patients thus were managed on-site based on clinical suspicion alone, posing risks to patients and health care workers and exhausting resources. To tackle this problem, we established a diagnostic PCR laboratory directly at a referral hospital serving a Lassa fever endemic area in Nigeria. Long-term collaboration between partners in the North and the South was crucial to implement this project. Training of laboratory staff in the partner institutions and on-site, mobilization of local human and financial resources, good management of the laboratory, a basic quality management and control system, and a stable supply chain for consumables and reagents were among the key factors for success. The laboratory reliably delivered results in a short turnaround time, despite some problems due to PCR contamination. The service has improved patient and contact management including treatment with ribavirin and led to better protection of health care workers against hospital-acquired infections. The data provide new insights into disease progression and a basis for further optimization of case management including supportive treatment.
doi:10.1371/journal.pntd.0001839
PMCID: PMC3459880  PMID: 23029594
15.  Isolation of Usutu Virus in Germany 
Usutu virus (USUV) is a mosquito-borne flavivirus that emerged 2001 in Austria and caused deaths in wild birds. In Germany, 70,378 female mosquitoes were captured in 2009 and 2010 and assayed for USUV. Virus was isolated in cell culture from one pool of Culex pipiens pipiens mosquitoes trapped exclusively in August 2010 in Weinheim, Germany. Subsequent phylogenetic analysis demonstrated a close relationship between the isolated USUV strain from Germany and a USUV strain from Austria, which was detected in a dead blackbird in 2004.
doi:10.4269/ajtmh.2011.11-0248
PMCID: PMC3163883  PMID: 21896821
17.  Cross-Species Analysis of the Replication Complex of Old World Arenaviruses Reveals Two Nucleoprotein Sites Involved in L Protein Function▿ 
Journal of Virology  2011;85(23):12518-12528.
Lassa virus (LASV) causing hemorrhagic Lassa fever in West Africa, Mopeia virus (MOPV) from East Africa, and lymphocytic choriomeningitis virus (LCMV) are the main representatives of the Old World arenaviruses. Little is known about how the components of the arenavirus replication machinery, i.e., the genome, nucleoprotein (NP), and L protein, interact. In addition, it is unknown whether these components can function across species boundaries. We established minireplicon systems for MOPV and LCMV in analogy to the existing LASV system and exchanged the components among the three systems. The functional and physical integrity of the resulting complexes was tested by reporter gene assay, Northern blotting, and coimmunoprecipitation studies. The minigenomes, NPs, and L proteins of LASV and MOPV could be exchanged without loss of function. LASV and MOPV L protein was also active in conjunction with LCMV NP, while the LCMV L protein required homologous NP for activity. Analysis of LASV/LCMV NP chimeras identified a single LCMV-specific NP residue (Ile-53) and the C terminus of NP (residues 340 to 558) as being essential for LCMV L protein function. The defect of LASV and MOPV NP in supporting transcriptional activity of LCMV L protein was not caused by a defect in physical NP-L protein interaction. In conclusion, components of the replication complex of Old World arenaviruses have the potential to functionally and physically interact across species boundaries. Residue 53 and the C-terminal domain of NP are important for function of L protein during genome replication and transcription.
doi:10.1128/JVI.05091-11
PMCID: PMC3209397  PMID: 21917982
18.  Mayaro Virus Infection in Traveler Returning from Amazon Basin, Northern Peru 
Emerging Infectious Diseases  2012;18(4):695-696.
doi:10.3201/eid1804.111717
PMCID: PMC3309675  PMID: 22469145
Mayaro virus; Mayaro virus infection; traveler; viral polyarthritis; viral polyarthralgia; alphavirus infection; viruses; Amazon Basin; northern Peru
19.  Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany 
PLoS ONE  2012;7(2):e32604.
This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV) RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula). USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03). Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany.
doi:10.1371/journal.pone.0032604
PMCID: PMC3289667  PMID: 22389712
20.  Isolation and Phylogenetic Analysis of Batai Virus, Germany 
A molecular survey including 16,057 mosquitoes captured in Southwest Germany during the summer of 2009 showed the presence of Batai virus (BATV) in Anopheles maculipennis sensu lato. Until this survey, there was no evidence for circulation of BATV in Germany. Analysis of partial S, M, and L segments showed that the sequences from all three segments were most closely related to BATV, indicating that the virus has not undergone reassortment. Phylogenetic analysis revealed a close relationship of the isolated BATV strain from Germany with strains from Slovakia, Ukraine, and Russia.
doi:10.4269/ajtmh.2011.10-0483
PMCID: PMC3029175  PMID: 21292892
21.  Current Molecular Epidemiology of Lassa Virus in Nigeria▿§ 
Journal of Clinical Microbiology  2011;49(3):1157-1161.
Recent Lassa virus strains from Nigeria were completely or partially sequenced. Phylogenetic analysis revealed the predominance of lineage II and III strains, the existence of a previously undescribed (sub)lineage in Nigeria, and the directional spread of virus in the southern part of the country. The Bayesian analysis also provided estimates for divergence times within the Lassa virus clade.
doi:10.1128/JCM.01891-10
PMCID: PMC3067713  PMID: 21191050
22.  Domain Structure of Lassa Virus L Protein ▿  
Journal of Virology  2010;85(1):324-333.
The 200-kDa L protein of arenaviruses plays a central role in viral genome replication and transcription. This study aimed at providing evidence for the domain structure of L protein by combining bioinformatics with a stepwise mutagenesis approach using the Lassa virus minireplicon system. Potential interdomain linkers were predicted using various algorithms. The prediction was challenged by insertion of flexible sequences into the predicted linkers. Insertion of 5 or 10 amino acid residues was tolerated at seven sites (S407, G446, G467, G774, G939, S1952, and V2074 in Lassa virus AV). At two of these sites, G467 and G939, L protein could be split into an N-terminal and a C-terminal part, which were able to trans-complement each other and reconstitute a functional complex upon coexpression. Coimmunoprecipitation studies revealed physical interaction between the N- and C-terminal domains, irrespective of whether L protein was split at G467 or G939. In confocal immunofluorescence microscopy, the N-terminal domains showed a dot-like, sometimes perinuclear, cytoplasmic distribution similar to that of full-length L protein, while the C-terminal domains were homogenously distributed in cytoplasm. The latter were redistributed into the dot-like structures upon coexpression with the corresponding N-terminal domain. In conclusion, this study demonstrates two interdomain linkers in Lassa virus L protein, at G467 and G939, suggesting that L protein is composed of at least three structural domains spanning residues 1 to 467, 467 to 939, and 939 to 2220. The first domain seems to mediate accumulation of L protein into cytoplasmic dot-like structures.
doi:10.1128/JVI.00721-10
PMCID: PMC3014181  PMID: 20980514
23.  Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: Implications for Evolution of Arenaviruses in Africa 
PLoS ONE  2011;6(6):e20893.
This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys) setulosus, respectively. Arenavirus infection of Mus (Nannomys) setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus–host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events.
doi:10.1371/journal.pone.0020893
PMCID: PMC3111462  PMID: 21695269
24.  Lambda Interferon Renders Epithelial Cells of the Respiratory and Gastrointestinal Tracts Resistant to Viral Infections▿ † 
Journal of Virology  2010;84(11):5670-5677.
Virus-infected cells secrete a broad range of interferons (IFN) which confer resistance to yet uninfected cells by triggering the synthesis of antiviral factors. The relative contributions of the various IFN subtypes to innate immunity against virus infections remain elusive. IFN-α, IFN-β, and other type I IFN molecules signal through a common, universally expressed cell surface receptor, whereas type III IFN (IFN-λ) uses a distinct cell-type-specific receptor complex for signaling. Using mice lacking functional receptors for type I IFN, type III IFN, or both, we found that IFN-λ plays an important role in the defense against several human pathogens that infect the respiratory tract, such as influenza A virus, influenza B virus, respiratory syncytial virus, human metapneumovirus, and severe acute respiratory syndrome (SARS) coronavirus. These viruses were more pathogenic and replicated to higher titers in the lungs of mice lacking both IFN receptors than in mice with single IFN receptor defects. In contrast, Lassa fever virus, which infects via the respiratory tract but primarily replicates in the liver, was not influenced by the IFN-λ receptor defect. Careful analysis revealed that expression of functional IFN-λ receptor complexes in the lung and intestinal tract is restricted to epithelial cells and a few other, undefined cell types. Interestingly, we found that SARS coronavirus was present in feces from infected mice lacking receptors for both type I and type III IFN but not in those from mice lacking single receptors, supporting the view that IFN-λ contributes to the control of viral infections in epithelial cells of both respiratory and gastrointestinal tracts.
doi:10.1128/JVI.00272-10
PMCID: PMC2876583  PMID: 20335250
25.  Improved Detection of Lassa Virus by Reverse Transcription-PCR Targeting the 5′ Region of S RNA▿  
Journal of Clinical Microbiology  2010;48(6):2009-2013.
The method of choice for the detection of Lassa virus is reverse transcription (RT)-PCR. However, the high degree of genetic variability of the virus poses a problem with the design of RT-PCR assays that will reliably detect all strains. Recently, we encountered difficulties in detecting some strains from Liberia and Nigeria in a commonly used glycoprotein precursor (GPC) gene-specific RT-PCR assay (A. H. Demby, J. Chamberlain, D. W. Brown, and C. S. Clegg, J. Clin. Microbiol. 32:2898-2903, 1994), which prompted us to revise the protocol. The design of the new assay, the GPC RT-PCR/2007 assay, took into account 62 S RNA sequences from all countries where Lassa fever is endemic, including 40 sequences generated from the strains in our collection. The analytical sensitivity of the new assay was determined with 11 strains from Sierra Leone, Liberia, Ivory Coast, and Nigeria by probit analysis; the viral loads detectable with a probability of 95% ranged from 342 to 2,560 S RNA copies/ml serum, which corresponds to 4 to 30 S RNA copies/assay. The GPC RT-PCR/2007 assay was validated with 77 serum samples and 1 cerebrospinal fluid sample from patients with laboratory-confirmed Lassa fever. The samples mainly originated from Liberia and Nigeria and included strains difficult to detect in the assay of 1994. The GPC RT-PCR/2007 assay detected virus in all clinical specimens (100% sensitivity). In conclusion, a new RT-PCR assay, based in part on the protocol developed by Demby et al. in 1994, for the detection of Lassa virus is described. Compared to the assay developed in 1994, the GPC RT-PCR/2007 assay offers improved sensitivity for the detection of Liberian and Nigerian Lassa virus strains.
doi:10.1128/JCM.02351-09
PMCID: PMC2884523  PMID: 20351210

Results 1-25 (56)