Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mannosylglycerate and Di-myo-Inositol Phosphate Have Interchangeable Roles during Adaptation of Pyrococcus furiosus to Heat Stress 
Applied and Environmental Microbiology  2014;80(14):4226-4233.
Marine hyperthermophiles accumulate small organic compounds, known as compatible solutes, in response to supraoptimal temperatures or salinities. Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at temperatures near 100°C. This organism accumulates mannosylglycerate (MG) and di-myo-inositol phosphate (DIP) in response to osmotic and heat stress, respectively. It has been assumed that MG and DIP are involved in cell protection; however, firm evidence for the roles of these solutes in stress adaptation is still missing, largely due to the lack of genetic tools to produce suitable mutants of hyperthermophiles. Recently, such tools were developed for P. furiosus, making this organism an ideal target for that purpose. In this work, genes coding for the synthases in the biosynthetic pathways of MG and DIP were deleted by double-crossover homologous recombination. The growth profiles and solute patterns of the two mutants and the parent strain were investigated under optimal growth conditions and also at supraoptimal temperatures and NaCl concentrations. DIP was a suitable replacement for MG during heat stress, but substitution of MG for DIP and aspartate led to less efficient growth under conditions of osmotic stress. The results suggest that the cascade of molecular events leading to MG synthesis is tuned for osmotic adjustment, while the machinery for induction of DIP synthesis responds to either stress agent. MG protects cells against heat as effectively as DIP, despite the finding that the amount of DIP consistently increases in response to heat stress in the nine (hyper)thermophiles examined thus far.
PMCID: PMC4068688  PMID: 24795373
2.  Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate phosphatase from Thermus thermophilus HB27 
The cloning, expression, purification, crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate phosphatase (MpgP) from T. thermophilus HB27 are reported. The stability of MpgP in solution was studied by size-exclusion chromatography and differential scanning fluorimetry assays.
Mannosylglycerate (MG) is primarily known as an osmolyte and is widely distributed among (hyper)thermophilic marine microorganisms. The synthesis of MG via mannosyl-3-phosphoglycerate synthase (MpgS) and mannosyl-3-phosphoglycerate phosphatase (MpgP), the so-called two-step pathway, is the most prevalent route among these organisms. The phosphorylated intermediate mannosyl-3-phosphoglycerate is synthesized by the first enzyme and is subsequently dephosphorylated by the second. The structure of MpgS from the thermophilic bacterium Thermus thermophilus HB27 has recently been solved and characterized. Here, the cloning, expression, purification, crystallization and preliminary crystallographic analysis of MpgP from T. thermophilus HB27 are reported. Size-exclusion chromatography assays suggested a dimeric assembly in solution for MpgP at pH 6.3 and together with differential scanning fluorimetry data showed that high ionic strength and charge compensation were required to produce a highly pure and soluble protein sample for crystallo­graphic studies. The crystals obtained belonged to the monoclinic space group P21, with unit-cell parameters a = 39.52, b = 70.68, c = 95.42 Å, β = 92.95°. Diffraction data were measured to 1.9 Å resolution. Matthews coefficient calculations suggested the presence of two MpgP monomers in the asymmetric unit and the calculation of a self-rotation Patterson map indicated that the two monomers could be related by a noncrystallographic twofold rotation axis, forming a dimer.
PMCID: PMC3053170  PMID: 21393850
mannosyl-3-phosphoglycerate phosphatase; Thermus thermophilus HB27; mannosylglycerate synthesis
3.  Production, crystallization and preliminary X-ray analysis of CTP:inositol-1-phosphate cytidylyltransferase from Archaeoglobus fulgidus  
The expression, purification, crystallization and preliminary X-ray diffraction analysis of CTP:inositol-1-phosphate cytidylyltransferase from A. fulgidus is described.
Archaeoglobus fulgidus, a hyperthermophilic archaeon, accumulates di-myo-inositol phosphate (DIP) in response to heat stress. Recently, the pathway for biosynthesis of DIP has been elucidated in this organism and involves a bifunctional enzyme that contains two domains: CTP:inositol-1-phosphate cytidylyltransferase (IPCT) as a soluble domain and di-myo-inositol-1,3′-phosphate-1-phosphate synthase (DIPPS) as a membrane domain. Here, the expression, purification, crystallization and preliminary X-ray diffraction analysis of the IPCT domain from A. fulgidus in the apo form are reported. The crystals diffracted to 2.4 Å resolution using a synchrotron source and belonged to the orthorhombic space group P21212, with unit-cell parameters a = 154.7, b = 83.9, c = 127.7 Å.
PMCID: PMC3001648  PMID: 21045295
CTP:inositol-1-phosphate cytidylyltransferase; Archaeoglobus fulgidus; compatible solutes; CDP-inositol; di-myo-inositol phosphate
4.  Crystal Structure of Archaeoglobus fulgidus CTP:Inositol-1-Phosphate Cytidylyltransferase, a Key Enzyme for Di-myo-Inositol-Phosphate Synthesis in (Hyper)Thermophiles▿† 
Journal of Bacteriology  2011;193(9):2177-2185.
Many Archaea and Bacteria isolated from hot, marine environments accumulate di-myo-inositol-phosphate (DIP), primarily in response to heat stress. The biosynthesis of this compatible solute involves the activation of inositol to CDP-inositol via the action of a recently discovered CTP:inositol-1-phosphate cytidylyltransferase (IPCT) activity. In most cases, IPCT is part of a bifunctional enzyme comprising two domains: a cytoplasmic domain with IPCT activity and a membrane domain catalyzing the synthesis of di-myo-inositol-1,3′-phosphate-1′-phosphate from CDP-inositol and l-myo-inositol phosphate. Herein, we describe the first X-ray structure of the IPCT domain of the bifunctional enzyme from the hyperthermophilic archaeon Archaeoglobus fulgidus DSMZ 7324. The structure of the enzyme in the apo form was solved to a 1.9-Å resolution. The enzyme exhibited apparent Km values of 0.9 and 0.6 mM for inositol-1-phosphate and CTP, respectively. The optimal temperature for catalysis was in the range 90 to 95°C, and the Vmax determined at 90°C was 62.9 μmol · min−1 · mg of protein−1. The structure of IPCT is composed of a central seven-stranded mixed β-sheet, of which six β-strands are parallel, surrounded by six α-helices, a fold reminiscent of the dinucleotide-binding Rossmann fold. The enzyme shares structural homology with other pyrophosphorylases showing the canonical motif G-X-G-T-(R/S)-X4-P-K. CTP, l-myo-inositol-1-phosphate, and CDP-inositol were docked into the catalytic site, which provided insights into the binding mode and high specificity of the enzyme for CTP. This work is an important step toward the final goal of understanding the full catalytic route for DIP synthesis in the native, bifunctional enzyme.
PMCID: PMC3133074  PMID: 21378188
5.  Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27 
Mannosyl-3-phosphoglycerate synthase (MpgS) is a key enzyme in the biosynthesis of MG. Here, the purification, crystallization and preliminary crystallographic characterization of apo MpgS from Thermus thermophilus HB27 are reported.
Mannosylglycerate (MG) is a compatible solute that is widespread in marine organisms that are adapted to hot environments, with its intracellular pool generally increasing in response to osmotic stress. These observations suggest that MG plays a relevant role in osmoadaptation and thermoadaptation. The pathways for the synthesis of MG have been characterized in a number of thermophilic and hyperthermophilic organisms. Mannosyl-3-phosphoglycerate synthase (MpgS) is a key enzyme in the biosynthesis of MG. Here, the purification, crystallization and preliminary crystallographic characterization of apo MpgS from Thermus thermophilus HB27 are reported. The addition of Zn2+ to the crystallization buffer was essential in order to obtain crystals. The crystals belonged to one of the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = b = 113, c = 197 Å. Diffraction data were obtained to a resolution of 2.97 Å.
PMCID: PMC2765889  PMID: 19851010
mannosyl-3-phosphoglycerate synthase; Thermus thermophilus HB27
6.  Collection and Cryopreservation of Hamster Oocytes and Mouse Embryos 
Embryos and oocytes were first successfully cryopreserved more than 30 years ago, when Whittingham et al.1 and Wilmut 2 separately described that mouse embryos could be frozen and stored at -196 °C and, a few years later, Parkening et al. 3 reported the birth of live offspring resulting from in vitro fertilization (IVF) of cryopreserved oocytes. Since then, the use of cryopreservation techniques has rapidly spread to become an essential component in the practice of human and animal assisted reproduction and in the conservation of animal genetic resources. Currently, there are two main methods used to cryopreserve oocytes and embryos: slow freezing and vitrification. A wide variety of approaches have been used to try to improve both techniques and millions of animals and thousands of children have been born from cryopreserved embryos. However, important shortcomings associated to cryopreservation still have to be overcome, since ice-crystal formation, solution effects and osmotic shock seem to cause several cryoinjuries in post-thawed oocytes and embryos. Slow freezing with programmable freezers has the advantage of using low concentrations of cryoprotectants, which are usually associated with chemical toxicity and osmotic shock, but their ability to avoid ice-crystal formation at low concentrations is limited. Slow freezing also induces supercooling effects that must be avoided using manual or automatic seeding 4. In the vitrification process, high concentrations of cryoprotectants inhibit the formation of ice-crystals and lead to the formation of a glasslike vitrified state in which water is solidified, but not expanded. However, due to the toxicity of cyroprotectants at the concentrations used, oocytes/embryos can only be exposed to the cryoprotectant solution for a very short period of time and in a minimum volume solution, before submerging the samples directly in liquid nitrogen 5. In the last decade, vitrification has become more popular because it is a very quick method in which no expensive equipment (programmable freezer) is required. However, slow freezing continues to be the most widely used method for oocyte/embryo cryopreservation. In this video-article we show, step-by-step, how to collect and slowly freeze hamster oocytes with high post-thaw survival rates. The same procedure can also be applied to successfully freeze and thaw mouse embryos at different stages of preimplantation development.
PMCID: PMC2789760  PMID: 19329926
7.  Thermococcus kodakarensis Mutants Deficient in Di-myo-Inositol Phosphate Use Aspartate To Cope with Heat Stress▿§  
Journal of Bacteriology  2009;192(1):191-197.
Many of the marine microorganisms which are adapted to grow at temperatures above 80°C accumulate di-myo-inositol phosphate (DIP) in response to heat stress. This led to the hypothesis that the solute plays a role in thermoprotection, but there is a lack of definitive experimental evidence. Mutant strains of Thermococcus kodakarensis (formerly Thermococcus kodakaraensis), manipulated in their ability to synthesize DIP, were constructed and used to investigate the involvement of DIP in thermoadaptation of this archaeon. The solute pool of the parental strain comprised DIP, aspartate, and α-glutamate. Under heat stress the level of DIP increased 20-fold compared to optimal conditions, whereas the pool of aspartate increased 4.3-fold in response to osmotic stress. Deleting the gene encoding the key enzyme in DIP synthesis, CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, abolished DIP synthesis. Conversely, overexpression of the same gene resulted in a mutant with restored ability to synthesize DIP. Despite the absence of DIP in the deletion mutant, this strain exhibited growth parameters similar to those of the parental strain, both at optimal (85°C) and supraoptimal (93.7°C) temperatures for growth. Analysis of the respective solute pools showed that DIP was replaced by aspartate. We conclude that DIP is part of the strategy used by T. kodakarensis to cope with heat stress, and aspartate can be used as an alternative solute of similar efficacy. This is the first study using mutants to demonstrate the involvement of compatible solutes in the thermoadaptation of (hyper)thermophilic organisms.
PMCID: PMC2798264  PMID: 19880594
8.  A Unique β-1,2-Mannosyltransferase of Thermotoga maritima That Uses Di-myo-Inositol Phosphate as the Mannosyl Acceptor▿  
Journal of Bacteriology  2009;191(19):6105-6115.
In addition to di-myo-inositol-1,3′-phosphate (DIP), a compatible solute widespread in hyperthermophiles, the organic solute pool of Thermotoga maritima comprises 2-(O-β-d-mannosyl)-di-myo-inositol-1,3′-phosphate (MDIP) and 2-(O-β-d-mannosyl-1,2-O-β-d-mannosyl)-di-myo-inositol-1,3′-phosphate (MMDIP), two newly identified β-1,2-mannosides. In cells grown under heat stress, MDIP was the major solute, accounting for 43% of the total pool; MMDIP and DIP accumulated to similar levels, each corresponding to 11.5% of the total pool. The synthesis of MDIP involved the transfer of the mannosyl group from GDP-mannose to DIP in a single-step reaction catalyzed by MDIP synthase. This enzyme used MDIP as an acceptor of a second mannose residue, yielding the di-mannosylated compound. Minor amounts of the tri-mannosylated form were also detected. With a genomic approach, putative genes for MDIP synthase were identified in the genome of T. maritima, and the assignment was confirmed by functional expression in Escherichia coli. Genes with significant sequence identity were found only in the genomes of Thermotoga spp., Aquifex aeolicus, and Archaeoglobus profundus. MDIP synthase of T. maritima had maximal activity at 95°C and apparent Km values of 16 mM and 0.7 mM for DIP and GDP-mannose, respectively. The stereochemistry of MDIP was characterized by isotopic labeling and nuclear magnetic resonance (NMR): DIP selectively labeled with carbon 13 at position C1 of the l-inositol moiety was synthesized and used as a substrate for MDIP synthase. This β-1,2-mannosyltransferase is unrelated to known glycosyltransferases, and within the domain Bacteria, it is restricted to members of the two deepest lineages, i.e., the Thermotogales and the Aquificales. To our knowledge, this is the first β-1,2-mannosyltransferase characterized thus far.
PMCID: PMC2747880  PMID: 19648237
9.  Bifunctional CTP:Inositol-1-Phosphate Cytidylyltransferase/CDP-Inositol:Inositol-1-Phosphate Transferase, the Key Enzyme for Di-myo-Inositol-Phosphate Synthesis in Several (Hyper)thermophiles▿ †  
Journal of Bacteriology  2007;189(15):5405-5412.
The pathway for the synthesis of di-myo-inositol-phosphate (DIP) was recently elucidated on the basis of the detection of the relevant activities in cell extracts of Archaeoglobus fulgidus and structural characterization of products by nuclear magnetic resonance (NMR) (N. Borges, L. G. Gonçalves, M. V. Rodrigues, F. Siopa, R. Ventura, C. Maycock, P. Lamosa, and H. Santos, J. Bacteriol. 188:8128-8135, 2006). Here, a genomic approach was used to identify the genes involved in the synthesis of DIP. Cloning and expression in Escherichia coli of the putative genes for CTP:l-myo-inositol-1-phosphate cytidylyltransferase and DIPP (di-myo-inositol-1,3′-phosphate-1′-phosphate, a phosphorylated form of DIP) synthase from several (hyper)thermophiles (A. fulgidus, Pyrococcus furiosus, Thermococcus kodakaraensis, Aquifex aeolicus, and Rubrobacter xylanophilus) confirmed the presence of those activities in the gene products. The DIPP synthase activity was part of a bifunctional enzyme that catalyzed the condensation of CTP and l-myo-inositol-1-phosphate into CDP-l-myo-inositol, as well as the synthesis of DIPP from CDP-l-myo-inositol and l-myo-inositol-1-phosphate. The cytidylyltransferase was absolutely specific for CTP and l-myo-inositol-1-P; the DIPP synthase domain used only l-myo-inositol-1-phosphate as an alcohol acceptor, but CDP-glycerol, as well as CDP-l-myo-inositol and CDP-d-myo-inositol, were recognized as alcohol donors. Genome analysis showed homologous genes in all organisms known to accumulate DIP and for which genome sequences were available. In most cases, the two activities (l-myo-inositol-1-P cytidylyltransferase and DIPP synthase) were fused in a single gene product, but separate genes were predicted in Aeropyrum pernix, Thermotoga maritima, and Hyperthermus butylicus. Additionally, using l-myo-inositol-1-phosphate labeled on C-1 with carbon 13, the stereochemical configuration of all the metabolites involved in DIP synthesis was established by NMR analysis. The two inositol moieties in DIP had different stereochemical configurations, in contradiction of previous reports. The use of the designation di-myo-inositol-1,3′-phosphate is recommended to facilitate tracing individual carbon atoms through metabolic pathways.
PMCID: PMC1951816  PMID: 17526717
10.  Biosynthetic Pathways of Inositol and Glycerol Phosphodiesters Used by the Hyperthermophile Archaeoglobus fulgidus in Stress Adaptation▿ †  
Journal of Bacteriology  2006;188(23):8128-8135.
Archaeoglobus fulgidus accumulates di-myo-inositol phosphate (DIP) and diglycerol phosphate (DGP) in response to heat and osmotic stresses, respectively, and the level of glycero-phospho-myo-inositol (GPI) increases primarily when the two stresses are combined. In this work, the pathways for the biosynthesis of these three compatible solutes were established based on the detection of the relevant enzymatic activities and characterization of the intermediate metabolites by nuclear magnetic resonance analysis. The synthesis of DIP proceeds from glucose-6-phosphate via four steps: (i) glucose-6-phosphate was converted into l-myo-inositol 1-phosphate by l-myo-inositol 1-phosphate synthase; (ii) l-myo-inositol 1-phosphate was activated to CDP-inositol at the expense of CTP; this is the first demonstration of CDP-inositol synthesis in a biological system; (iii) CDP-inositol was coupled with l-myo-inositol 1-phosphate to yield a phosphorylated intermediate, 1,1′-di-myo-inosityl phosphate 3-phosphate (DIPP); (iv) finally, DIPP was dephosphorylated into DIP by the action of a phosphatase. The synthesis of the two other polyol-phosphodiesters, DGP and GPI, proceeds via the condensation of CDP-glycerol with the respective phosphorylated polyol, glycerol 3-phosphate for DGP and l-myo-inositol 1-phosphate for GPI, yielding the respective phosphorylated intermediates, 1X,1′X-diglyceryl phosphate 3-phosphate (DGPP) and 1-(1X-glyceryl) myo-inosityl phosphate 3-phosphate (GPIP), which are subsequently dephosphorylated to form the final products. The results disclosed here represent an important step toward the elucidation of the regulatory mechanisms underlying the differential accumulation of these compounds in response to heat and osmotic stresses.
PMCID: PMC1698214  PMID: 17028285
11.  Role of Nγ-Acetyldiaminobutyrate as an Enzyme Stabilizer and an Intermediate in the Biosynthesis of Hydroxyectoine 
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Nγ-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Cánovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794–25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A 1H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways—directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine.
PMCID: PMC99699  PMID: 10473374

Results 1-11 (11)