Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Production and crystallization of α-phosphoglucomutase from Lactococcus lactis  
α-Phosphoglucomutase from L. lactis, a homologue of human phosphomannomutase 1, was produced and crystallized. X-ray diffraction data were collected to 1.5 Å resolution.
α-Phosphoglucomutase (α-PGM) is an enzyme that is essential for the growth of Lactococcus lactis. The enzyme links bacterial anabolism with sugar utilization through glycolysis by catalyzing the reversible interconversion of glucose 6-­phosphate and α-glucose 1-phosphate. The gene encoding α-PGM was cloned and overexpressed in L. lactis. The purified protein was functionally active and was crystallized with ammonium sulfate as a precipitant using vapour-diffusion and seeding techniques. Optimized crystals diffracted to 1.5 Å resolution at a synchrotron source.
PMCID: PMC3433211  PMID: 22949208
α-phosphoglucomutase; Lactococcus lactis
3.  Production and crystallization of α-phosphoglucomutase from Lactococcus lactis. Corrigendum 
A correction is made to the article by Nogly et al. (2012). Acta Cryst. F68, 1113–1115.
Details of the beamline, detector and overall Wilson B in the article by Nogly et al. (2012, Acta Cryst. F68, 1113–1115) are corrected.
PMCID: PMC3818064
α-phosphoglucomutase; Lactococcus lactis; corrigendum
4.  An Efficient Strategy for Small-Scale Screening and Production of Archaeal Membrane Transport Proteins in Escherichia coli 
PLoS ONE  2013;8(10):e76913.
Membrane proteins play a key role in many fundamental cellular processes such as transport of nutrients, sensing of environmental signals and energy transduction, and account for over 50% of all known drug targets. Despite their importance, structural and functional characterisation of membrane proteins still remains a challenge, partially due to the difficulties in recombinant expression and purification. Therefore the need for development of efficient methods for heterologous production is essential.
Methodology/Principal Findings
Fifteen integral membrane transport proteins from Archaea were selected as test targets, chosen to represent two superfamilies widespread in all organisms known as the Major Facilitator Superfamily (MFS) and the 5-Helix Inverted Repeat Transporter superfamily (5HIRT). These proteins typically have eleven to twelve predicted transmembrane helices and are putative transporters for sugar, metabolite, nucleobase, vitamin or neurotransmitter. They include a wide range of examples from the following families: Metabolite-H+-symporter; Sugar Porter; Nucleobase-Cation-Symporter-1; Nucleobase-Cation-Symporter-2; and neurotransmitter-sodium-symporter. Overproduction of transporters was evaluated with three vectors (pTTQ18, pET52b, pWarf) and two Escherichia coli strains (BL21 Star and C43 (DE3)). Thirteen transporter genes were successfully expressed; only two did not express in any of the tested vector-strain combinations. Initial trials showed that seven transporters could be purified and six of these yielded quantities of ≥ 0.4 mg per litre suitable for functional and structural studies. Size-exclusion chromatography confirmed that two purified transporters were almost homogeneous while four others were shown to be non-aggregating, indicating that they are ready for up-scale production and crystallisation trials.
Here, we describe an efficient strategy for heterologous production of membrane transport proteins in E. coli. Small-volume cultures (10 mL) produced sufficient amount of proteins to assess their purity and aggregation state. The methods described in this work are simple to implement and can be easily applied to many more membrane proteins.
PMCID: PMC3838208  PMID: 24282478
5.  Production, crystallization and preliminary X-ray analysis of CTP:inositol-1-phosphate cytidylyltransferase from Archaeoglobus fulgidus  
The expression, purification, crystallization and preliminary X-ray diffraction analysis of CTP:inositol-1-phosphate cytidylyltransferase from A. fulgidus is described.
Archaeoglobus fulgidus, a hyperthermophilic archaeon, accumulates di-myo-inositol phosphate (DIP) in response to heat stress. Recently, the pathway for biosynthesis of DIP has been elucidated in this organism and involves a bifunctional enzyme that contains two domains: CTP:inositol-1-phosphate cytidylyltransferase (IPCT) as a soluble domain and di-myo-inositol-1,3′-phosphate-1-phosphate synthase (DIPPS) as a membrane domain. Here, the expression, purification, crystallization and preliminary X-ray diffraction analysis of the IPCT domain from A. fulgidus in the apo form are reported. The crystals diffracted to 2.4 Å resolution using a synchrotron source and belonged to the orthorhombic space group P21212, with unit-cell parameters a = 154.7, b = 83.9, c = 127.7 Å.
PMCID: PMC3001648  PMID: 21045295
CTP:inositol-1-phosphate cytidylyltransferase; Archaeoglobus fulgidus; compatible solutes; CDP-inositol; di-myo-inositol phosphate
6.  Crystal Structure of Archaeoglobus fulgidus CTP:Inositol-1-Phosphate Cytidylyltransferase, a Key Enzyme for Di-myo-Inositol-Phosphate Synthesis in (Hyper)Thermophiles▿† 
Journal of Bacteriology  2011;193(9):2177-2185.
Many Archaea and Bacteria isolated from hot, marine environments accumulate di-myo-inositol-phosphate (DIP), primarily in response to heat stress. The biosynthesis of this compatible solute involves the activation of inositol to CDP-inositol via the action of a recently discovered CTP:inositol-1-phosphate cytidylyltransferase (IPCT) activity. In most cases, IPCT is part of a bifunctional enzyme comprising two domains: a cytoplasmic domain with IPCT activity and a membrane domain catalyzing the synthesis of di-myo-inositol-1,3′-phosphate-1′-phosphate from CDP-inositol and l-myo-inositol phosphate. Herein, we describe the first X-ray structure of the IPCT domain of the bifunctional enzyme from the hyperthermophilic archaeon Archaeoglobus fulgidus DSMZ 7324. The structure of the enzyme in the apo form was solved to a 1.9-Å resolution. The enzyme exhibited apparent Km values of 0.9 and 0.6 mM for inositol-1-phosphate and CTP, respectively. The optimal temperature for catalysis was in the range 90 to 95°C, and the Vmax determined at 90°C was 62.9 μmol · min−1 · mg of protein−1. The structure of IPCT is composed of a central seven-stranded mixed β-sheet, of which six β-strands are parallel, surrounded by six α-helices, a fold reminiscent of the dinucleotide-binding Rossmann fold. The enzyme shares structural homology with other pyrophosphorylases showing the canonical motif G-X-G-T-(R/S)-X4-P-K. CTP, l-myo-inositol-1-phosphate, and CDP-inositol were docked into the catalytic site, which provided insights into the binding mode and high specificity of the enzyme for CTP. This work is an important step toward the final goal of understanding the full catalytic route for DIP synthesis in the native, bifunctional enzyme.
PMCID: PMC3133074  PMID: 21378188
7.  Structural Insights into Dissimilatory Sulfite Reductases: Structure of Desulforubidin from Desulfomicrobium Norvegicum 
Dissimilatory sulfite reductases (dSiRs) are crucial enzymes in bacterial sulfur-based energy metabolism, which are likely to have been present in some of the earliest life forms on Earth. Several classes of dSiRs have been proposed on the basis of different biochemical and spectroscopic properties, but it is not clear whether this corresponds to actual physiological or structural differences. Here, we describe the first structure of a dSiR from the desulforubidin class isolated from Desulfomicrobium norvegicum. The desulforubidin (Drub) structure is assembled as α2β2γ2, in which two DsrC proteins are bound to the core [DsrA]2[DsrB]2 unit, as reported for the desulfoviridin (Dvir) structure from Desulfovibrio vulgaris. Unlike Dvir, four sirohemes and eight [4Fe–4S] clusters are present in Drub. However, the structure indicates that only two of the Drub coupled siroheme-[4Fe–4S] cofactors are catalytically active. Mass spectrometry studies of purified Drub and Dvir show that both proteins present different oligomeric complex forms that bind two, one, or no DsrC proteins, providing an explanation for conflicting spectroscopic and biochemical results in the literature, and further indicating that DsrC is not a subunit of dSiR, but rather a protein with which it interacts.
PMCID: PMC3153041  PMID: 21833321
sulfite reductases; sulfur metabolism; sulfate reducing bacteria; siroheme; iron–sulfur clusters; X-ray structure

Results 1-7 (7)