PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Monoubiquitination of Ancient Ubiquitous Protein 1 Promotes Lipid Droplet Clustering 
PLoS ONE  2013;8(9):e72453.
Lipid droplets, the intracellular storage organelles for neutral lipids, exist in a wide range of sizes and of morphologically distinct organization, from loosely dispersed lipid droplets to tightly packed lipid droplet clusters. We show that the lipid droplet protein AUP1 induces cluster formation. A fraction of AUP1 is monoubiquitinated at various lysine residues. This process depends on its internal CUE domain, which is a known ubiquitin-binding domain. AUP1 with a deleted or point mutagenized CUE domain, as well as a lysine-free mutant, are not ubiquitinated and do not induce lipid droplet clustering. When such ubiquitination deficient mutants are fused to ubiquitin, clustering is restored. AUP1 mutants with defective droplet targeting fail to induce clustering. Also, another lipid droplet protein, NSDHL, with a fused ubiquitin does not induce clustering. The data indicate that monoubiquitinated AUP1 on the lipid droplet surface specifically induces clustering, and suggest a homophilic interaction with a second AUP1 molecule or a heterophilic interaction with another ubiquitin-binding protein.
doi:10.1371/journal.pone.0072453
PMCID: PMC3764060  PMID: 24039768
2.  GLTP Mediated Non-Vesicular GM1 Transport between Native Membranes 
PLoS ONE  2013;8(3):e59871.
Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.
doi:10.1371/journal.pone.0059871
PMCID: PMC3610762  PMID: 23555818
3.  Exogenous Ether Lipids Predominantly Target Mitochondria 
PLoS ONE  2012;7(2):e31342.
Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.
doi:10.1371/journal.pone.0031342
PMCID: PMC3279356  PMID: 22348073
4.  Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles—a role of the endocytic–exocytic pathway 
EMBO Molecular Medicine  2011;3(7):398-409.
The differentiation of stem cells is a fundamental process in cell biology and understanding its mechanism might open a new avenue for therapeutic strategies. Using an ex vivo co-culture system consisting of human primary haematopoietic stem and progenitor cells growing on multipotent mesenchymal stromal cells as a feeder cell layer, we describe here the exosome-mediated release of small membrane vesicles containing the stem and cancer stem cell marker prominin-1 (CD133) during haematopoietic cell differentiation. Surprisingly, this contrasts with the budding mechanism underlying the release of this cholesterol-binding protein from plasma membrane protrusions of neural progenitors. Nevertheless, in both progenitor cell types, protein–lipid assemblies might be the essential structural determinant in the release process of prominin-1. Collectively, these data support the concept that prominin-1-containing lipid rafts may host key determinants necessary to maintain stem cell properties and their quantitative reduction or loss may result in cellular differentiation.
doi:10.1002/emmm.201100147
PMCID: PMC3210830  PMID: 21591261
CD133; cell differentiation; exosome; haematopoietic stem cell; lipid raft
5.  OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism 
Analysis of variants in three genes encoding oxysterol-binding protein (OSBP) homologues (OSBPL2, OSBPL9, OSBPL10) in Finnish families with familial low high-density lipoprotein (HDL) levels (N = 426) or familial combined hyperlipidemia (N = 684) revealed suggestive linkage of OSBPL10 single-nucleotide polymorphisms (SNPs) with extreme end high triglyceride (TG; >90th percentile) trait. Prompted by this initial finding, we carried out association analysis in a metabolic syndrome subcohort (Genmets) of Health2000 examination survey (N = 2,138), revealing association of multiple OSBPL10 SNPs with high serum TG levels (>95th percentile). To investigate whether OSBPL10 could be the gene underlying the observed linkage and association, we carried out functional experiments in the human hepatoma cell line Huh7. Silencing of OSBPL10 increased the incorporation of [3H]acetate into cholesterol and both [3H]acetate and [3H]oleate into triglycerides and enhanced the accumulation of secreted apolipoprotein B100 in growth medium, suggesting that the encoded protein ORP10 suppresses hepatic lipogenesis and very-low-density lipoprotein production. ORP10 was shown to associate dynamically with microtubules, consistent with its involvement in intracellular transport or organelle positioning. The data introduces OSBPL10 as a gene whose variation may contribute to high triglyceride levels in dyslipidemic Finnish subjects and provides evidence for ORP10 as a regulator of cellular lipid metabolism.
Electronic supplementary material
The online version of this article (doi:10.1007/s00109-009-0490-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s00109-009-0490-z
PMCID: PMC2707950  PMID: 19554302
Cholesterol; High-density lipoprotein; Microtubule; Oxysterol-binding protein; Single-nucleotide polymorphism; Triglyceride
6.  CHOLESTEROL DEPLETION ALTERS DETERGENT-SPECIFIC SOLUBILITY PROFILES OF SELECTED TIGHT JUNCTION PROTEINS AND THE PHOSPHORYLATION OF OCCLUDIN 
Experimental cell research  2007;313(12):2597-2610.
Differential centrifugation of Triton X-100 or CHAPS lysates from control and cholesterol (CH) depleted MDCK II cells, segregated integral tight junction (TJ) proteins associated with detergent resistant membranes (DRMs) into two groups. Group A proteins (occludin, claudin-2 and -3) were detected in large, intermediate and small aggregates in both detergents, whereas group B proteins (claudin-1, -4 and -7) were observed in small aggregates in TX-100 and in intermediate and small aggregates in CHAPS. Depletion of CH altered the distribution of group A and B proteins among the three size categories in a detergent-specific manner. In lysates produced with octyl glucoside, a detergent that selectively extracts proteins from DRMs, group A proteins were undetectable in large aggregates and CH depletion did not alter the distribution of either group A or B proteins in intermediate or small aggregates. Neither occludin (group A) nor claudin-1 (group B) was in intimate enough contact with CH to be cross-linked to [3H]-photo-cholesterol. However, antibodies to either TJ protein co-immunoprecipitated caveolin-1, a CH-binding protein. Unlike claudins, occludin’s presence in TJs and DRMs did not require palmitoylation. Equilibrium density centrifugation on discontinuous OptiPrep gradients revealed detergent-related differences in the densities of TJ-bearing DRMs. There was little or no change in those densities after CH depletion. Removing CH from the plasma membrane increased tyrosine and threonine phosphorylation of occludin, and transepithelial electrical resistance (TER) within 30 min. After 2 h of CH efflux, phospho-occludin levels and TER fell below control values. We conclude that the association of integral TJ proteins with DRMS, pelleted at low speeds, is partially CH dependent. However, the buoyant density of TJ-associated DRMs is a function of the detergent used and is insensitive to decreases in CH.
doi:10.1016/j.yexcr.2007.05.009
PMCID: PMC2169288  PMID: 17574235
Tight junctions; occludin; claudins; cholesterol; detergent resistant microdomains
7.  Protein Networks Supporting AP-3 Function in Targeting Lysosomal Membrane Proteins 
Molecular Biology of the Cell  2008;19(5):1942-1951.
The AP-3 adaptor complex targets selected transmembrane proteins to lysosomes and lysosome-related organelles. We reconstituted its preferred interaction with liposomes containing the ADP ribosylation factor (ARF)-1 guanosine triphosphatase (GTPase), specific cargo tails, and phosphatidylinositol-3 phosphate, and then we performed a proteomic screen to identify new proteins supporting its sorting function. We identified ≈30 proteins belonging to three networks regulating either AP-3 coat assembly or septin polymerization or Rab7-dependent lysosomal transport. RNA interference shows that, among these proteins, the ARF-1 exchange factor brefeldin A-inhibited exchange factor 1, the ARF-1 GTPase-activating protein 1, the Cdc42-interacting Cdc42 effector protein 4, an effector of septin-polymerizing GTPases, and the phosphatidylinositol-3 kinase IIIC3 are key components regulating the targeting of lysosomal membrane proteins to lysosomes in vivo. This analysis reveals that these proteins, together with AP-3, play an essential role in protein sorting at early endosomes, thereby regulating the integrity of these organelles.
doi:10.1091/mbc.E08-02-0110
PMCID: PMC2366865  PMID: 18287518
8.  Aberrant Receptor-Mediated Endocytosis of Schistosoma mansoni Glycoproteins on Host Lipoproteins 
PLoS Medicine  2006;3(8):e253.
Background
Bilharzia is one of the major parasitic infections affecting the public health and socioeconomic circumstances in (sub) tropical areas. Its causative agents are schistosomes. Since these worms remain in their host for decades, they have developed mechanisms to evade or resist the immune system. Like several other parasites, their surface membranes are coated with a protective layer of glycoproteins that are anchored by a lipid modification.
Methods and Findings
We studied the release of glycosyl-phosphatidylinositol (GPI)-anchored proteins of S. mansoni and found them in the circulation associated with host lipoprotein particles. Host cells endocytosed schistosomal GPI-anchored proteins via their lipoprotein receptor pathway, resulting in disturbed lysosome morphology. In patients suffering from chronic schistosomiasis, antibodies attacked the parasite GPI-anchored glycoproteins that were associated with the patients' own lipoprotein particles. These immunocomplexes were endocytosed by cells carrying an immunoglobulin-Fc receptor, leading to clearance of lipoproteins by the immune system. As a consequence, neutral lipids accumulated in neutrophils of infected hamsters and in human neutrophils incubated with patient serum, and this accumulation was associated with apoptosis and reduced neutrophil viability. Also, Trypanosoma brucei, the parasite that causes sleeping sickness, released its major GPI-anchored glycoprotein VSG221 on lipoprotein particles, demonstrating that this process is generalizable to other pathogens/parasites.
Conclusions
Transfer of parasite antigens to host cells via host lipoproteins disrupts lipid homeostasis in immune cells, promotes neutrophil apoptosis, may result in aberrant antigen presentation in host cells, and thus cause an inefficient immune response against the pathogen.
The finding that GPI-anchored schistosome proteins are transferred from the parasite surface to human lipoproteins may explain how the parasites interfere with an effective immune response.
Editors' Summary
Background.
More than 200 million people live in a close but uneasy alliance with schistosomes, a type of parasitic worm. Like many parasites, schistosomes have a complicated life cycle. They start life by reproducing in fresh-water snails. The snails release free-swimming, infectious parasites, which burrow into the skin of people who swim in the water. The parasites then migrate to the veins draining the gut and mature into 10–20 mm-long adult worms. The worms mate and lay eggs, some of which pass into the feces and so back into water where they hatch and infect fresh snails. Schistosomiasis does not kill many people but it does cause serious health problems. Most of these are caused by the human immune system responding to eggs that get trapped in the veins of the liver, spleen, and gut. Immune cells recognize proteins on the eggs as foreign and organize a hard shell of immune cells and tough fibres around the egg. Eventually, these fibres block the blood vessels in the liver, spleen, and gut, causing locally raised blood pressure, organ damage, and potentially fatal bleeding.
Why Was This Study Done?
Although the immune system mounts a vigorous attack against schistosome eggs, the parasites themselves somehow evade the immune response—adult worms pull off this feat of “invisibility” for years. The researchers who did this study wanted to find out whether the release of glycoproteins (proteins decorated with sugars) from the surface of the schistosome worms is involved in this immune evasion in some way. These glycoproteins (which are anchored to the parasite's surface by a structure called a GPI-anchor; GPI stands for glycosyl-phosphatidylinositol, a sort of fat or lipid) are the major antigens of schistosomes—the molecules that the immune system normally recognizes on foreign intruders.
What Did the Researchers Do and Find?
The researchers first showed that GPI-anchored schistosomal glycoproteins are released into the circulation of patients and there become attached to human lip oproteinparticles (water-soluble carrier molecules that take fats around the body). Then, using cells grown in the laboratory, the researchers discovered that lipoprotein particles loaded with parasite glycoproteins could enter mammalian cells through an interaction with a protein called the low-density lipoprotein receptor, which normally helps cells absorb the lipids needed to make membranes. Once in the cell, the parasite glycoproteins travelled to cellular regions called lysosomes, which they seemed to disrupt. In addition, the researchers found that the parasite glycoproteins could enter mammalian cells by a second route: This involved the glycoproteins being taken up by neutrophils (a type of immune cells). Many of these neutrophils then died, possibly because of the large amount of lipid they accumulated.
What Does This Mean?
These results provide some tantalising clues to how schistosomes might evade the immune response. First, just binding to lipoprotein particles might change how they are seen by the immune system (possible they are not as clearly recognized as foreign substances) and weaken the immune response against them. On the other hand, the damage done to neutrophils by lipid accumulation might also contribute to how schistosomes hide in the human hosts. Neutrophils are an important type of immune cell, and their destruction could compromise the immune system's response to schistosomes. Furthermore, although the researchers do not investigate this possibility, other cells of the immune system that have might also take up these lipids and be damaged. Finally, even if immune cells are not killed outright by lipid accumulation, disruption of their lysosomes might also affect how well the immune system recognizes schistosomes as foreign. The full details of the complex interplay between schistosomes and their hosts remain a mystery, but these results provide intriguing new avenues to explore that might eventually suggest new treatments for schistosomiasis.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030253.
• World Health Organization information on schistosomiasis
• US Centers for Disease Control and Prevention information for the public and for professionals on schistosomiasis
• MedlinePlus encyclopedia entry on schistosomiasis
• Wikipedia page on schistosomiasis (note: Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030253
PMCID: PMC1502155  PMID: 16942390
9.  Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts 
The Journal of Cell Biology  2003;160(1):113-123.
Formation of senile plaques containing the β-amyloid peptide (Aβ) derived from the amyloid precursor protein (APP) is an invariant feature of Alzheimer's disease (AD). APP is cleaved either by β-secretase or by α-secretase to initiate amyloidogenic (release of Aβ) or nonamyloidogenic processing of APP, respectively. A key to understanding AD is to unravel how access of these enzymes to APP is regulated. Here, we demonstrate that lipid rafts are critically involved in regulating Aβ generation. Reducing cholesterol levels in N2a cells decreased Aβ production. APP and the β-site APP cleavage enzyme (BACE1) could be induced to copatch at the plasma membrane upon cross-linking with antibodies and to segregate away from nonraft markers. Antibody cross-linking dramatically increased production of Aβ in a cholesterol-dependent manner. Aβ generation was dependent on endocytosis and was reduced after expression of the dynamin mutant K44A and the Rab5 GTPase-activating protein, RN-tre. This inhibition could be overcome by antibody cross-linking. These observations suggest the existence of two APP pools. Although APP inside raft clusters seems to be cleaved by β-secretase, APP outside rafts undergoes cleavage by α-secretase. Thus, access of α- and β-secretase to APP, and therefore Aβ generation, may be determined by dynamic interactions of APP with lipid rafts.
doi:10.1083/jcb.200207113
PMCID: PMC2172747  PMID: 12515826
lipid rafts; β-amyloid; BACE; Alzheimer's disease; endocytosis
10.  Assembly of Myelin by Association of Proteolipid Protein with Cholesterol- and Galactosylceramide-Rich Membrane Domains 
The Journal of Cell Biology  2000;151(1):143-154.
Myelin is a specialized membrane enriched in glycosphingolipids and cholesterol that contains a limited spectrum of proteins. We investigated the assembly of myelin components by oligodendrocytes and analyzed the role of lipid–protein interactions in this process. Proteolipid protein (PLP), the major myelin protein, was recovered from cultured oligodendrocytes from a low-density CHAPS-insoluble membrane fraction (CIMF) enriched in myelin lipids. PLP associated with the CIMF after leaving the endoplasmic reticulum but before exiting the Golgi apparatus, suggesting that myelin lipid and protein components assemble in the Golgi complex. The specific association of PLP with myelin lipids in CIMF was supported by the finding that it was efficiently cross-linked to photoactivable cholesterol, but not to phosphatidylcholine, which is underrepresented in both myelin and CIMF. Furthermore, depletion of cholesterol or inhibition of sphingolipid synthesis in oligodendrocytes abolished the association of PLP with CIMF. Thus, PLP may be recruited to myelin rafts, represented by CIMF, via lipid–protein interactions. In contrast to oligodendrocytes, after transfection in BHK cells, PLP is absent from isolated CIMF, suggesting that PLP requires specific lipids for raft association. In mice deficient in the enzyme ceramide galactosyl transferase, which cannot synthesize the main myelin glycosphingolipids, a large fraction of PLP no longer associates with rafts. Formation of a cholesterol- and galactosylceramide-rich membrane domain (myelin rafts) may be critical for the sorting of PLP and assembly of myelin in oligodendrocytes.
PMCID: PMC2189802  PMID: 11018060
proteolipid protein; cholesterol; galactocerebroside; myelin; rafts
11.  Sterol-Derived Hormone(s) Controls Entry into Diapause in Caenorhabditis elegans by Consecutive Activation of DAF-12 and DAF-16 
PLoS Biology  2004;2(10):e280.
Upon starvation or overcrowding, Caenorhabditis elegans interrupts its reproductive cycle and forms a specialised larva called dauer (enduring). This process is regulated by TGF-β and insulin-signalling pathways and is connected with the control of life span through the insulin pathway components DAF-2 and DAF-16. We found that replacing cholesterol with its methylated metabolite lophenol induced worms to form dauer larvae in the presence of food and low population density. Our data indicate that methylated sterols do not actively induce the dauer formation but rather that the reproductive growth requires a cholesterol-derived hormone that cannot be produced from methylated sterols. Using the effect of lophenol on growth, we have partially purified activity, named gamravali, which promotes the reproduction. In addition, the effect of lophenol allowed us to determine the role of sterols during dauer larva formation and longevity. In the absence of gamravali, the nuclear hormone receptor DAF-12 is activated and thereby initiates the dauer formation program. Active DAF-12 triggers in neurons the nuclear import of DAF-16, a forkhead domain transcription factor that contributes to dauer differentiation. This hormonal control of DAF-16 activation is, however, independent of insulin signalling and has no influence on life span.
A sterol-derived activity is partially purified and shown to support reproductive growth under sterol-free conditions that normally induce dauer larva formation in nematodes
doi:10.1371/journal.pbio.0020280
PMCID: PMC517820  PMID: 15383841
12.  Distribution and Transport of Cholesterol in Caenorhabditis elegans 
Molecular Biology of the Cell  2001;12(6):1725-1736.
Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1–L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins. rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.
PMCID: PMC37336  PMID: 11408580

Results 1-12 (12)