PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Biomaterial Topography Alters Healing In Vivo and Monocyte/Macrophage Activation In Vitro 
The effect of biomaterial topography on healing in vivo and monocyte/macrophage stimulation in vitro was assessed. A series of expanded polytetrafluoroethylene (ePTFE) materials were characterized by increasing average intranodal distance of 1.2 µm (1.2-ePTFE), 3.0 µm (3.0-ePTFE) and 4.4 µm (4.4-ePTFE), but presented consistent surface chemistry with nonporous PTFE (np-PTFE). Subcutaneous implantation of 4.4-ePTFE into mice resulted in a statistically thinner capsule that appeared less organized and less dense than the np-PTFE response. In vitro, isolated monocytes/macrophages cultured on np-PTFE produced low levels of interleukin 1-beta (IL-1β), 1.2-ePTFE and 3.0-ePTFE stimulated intermediate levels, and 4.4-ePTFE stimulated a 15-fold increase over np-PTFE. Analysis of cDNA microarrays demonstrated that additional proinflammatory cytokines and chemokines, including IL-1β, interleukin 6, tumor necrosis factor alpha, monocyte chemotactic protein 1 and macrophage inflammatory protein 1-beta, were expressed at higher levels by monocytes/macrophages cultured on 4.4-ePTFE at four and twenty-four hours. Expression ratios for several genes were quantified by RT-PCR and were consistent with those from the cDNA array results. These results demonstrate the effect of biomaterial topography on early proinflammatory cytokine production and gene transcription by monocytes/macrophages in vitro as well as decreased fibrous capsule thickness in vivo.
doi:10.1002/jbm.a.32893
PMCID: PMC4235956  PMID: 20725970
human monocytes / macrophages; topography; surface dependent behavior; foreign body reaction; microarray
2.  IFATS Collection: Combinatorial Peptides Identify α5β1 Integrin as a Receptor for the Matricellular Protein SPARC on Adipose Stromal Cells 
Stem cells (Dayton, Ohio)  2008;26(10):2735-2745.
The biological features of adipose stromal (stem) cells (ASC), which serve as progenitors for differentiated cells of white adipose tissue (WAT), are still largely undefined. In an initiative to identify functional ASC surface receptors, we screened a combinatorial library for peptide ligands binding to patient-derived ASC. We demonstrate that both primary and cultured human and mouse stromal cells express a conserved receptor targeted by peptides found to mimic SPARC, a matricellular protein that is required for normal WAT development. A signaling receptor for SPARC has not as yet been determined. By using the SPARC-mimicking peptides CMLAGWIPC (termed hPep) and CWLGEWLGC (termed mPep), isolated by panning on human and mouse cells, respectively, we identified the α5β1 integrin complex as a candidate receptor for SPARC. On the basis of these results, we evaluated ASC responses to SPARC or SPARC-mimicking peptide exposure. Our results suggest that extracellular SPARC binds to α5β1 integrin at sites of focal adhesions, an interaction disrupting firm attachment of ASC to extracellular matrix. We propose that SPARC-mediated mobilization of ASC through its effect on α5β1 integrin complex provides a functional basis for the regulation of WAT body composition by SPARC. We also show that α5β1 integrin is a potential target for ASC-selective intracellular delivery of bioactive peptides and gene therapy vectors directed by the SPARC-mimicking peptides.
doi:10.1634/stemcells.2008-0212
PMCID: PMC4066418  PMID: 18583538
Adipose stromal cells; Extracellular matrix; Mobilization; Peptide phage display
3.  Proteolysis of the Matricellular Protein Hevin by Matrix Metalloproteinase-3 Produces a SPARC-like Fragment (SLF) Associated with Neovasculature in a Murine Glioma Model 
Journal of cellular biochemistry  2011;112(11):3093-3102.
The matricellular SPARC-family member hevin (Sparc-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. Based on sequence similarity, we hypothesized that proteolytic digestion of hevin would result in SPARC-like fragments (SLF) that affect the activity and/or location of these proteins. Incubation of hevin with matrix metalloproteinase-3 (MMP-3), a protease known to cleave SPARC, produced a limited number of peptides. Sequencing revealed the major proteolytic products to be SPARC-like in primary structure. In gliomas implanted into murine brain, a SLF was associated with SPARC in the neovasculature but not with hevin, the latter prominent in the astrocytes encompassed by infiltrating tumor. In this model of invasive glioma that involves MMP-3 activity, host-derived SLF was not observed in the extracellular matrix adjacent to tumor cells. In contrast, it occurred with its homolog SPARC in the angiogenic response to the tumor. We conclude that MMP-3-derived SLF is a marker of neovessels in glioma, where it could influence the activity of SPARC.
doi:10.1002/jcb.23235
PMCID: PMC3188378  PMID: 21688302
SPARC; HEVIN; SPARC-LIKE FRAGMENT; MATRIX METALLOPROTEINASE-3; PLASMIN; THROMBIN; GLIOMA; ANGIOGENESIS
4.  Overexpression of SPARC in Human Trabecular Meshwork Increases Intraocular Pressure and Alters Extracellular Matrix 
Purpose.
Intraocular pressure (IOP) regulation is largely unknown. SPARC-null mice demonstrate a lower IOP resulting from increased outflow. SPARC is a matricellular protein often associated with fibrosis. We hypothesized that SPARC overexpression would alter IOP by affecting extracellular matrix (ECM) synthesis and/or turnover in the trabecular meshwork (TM).
Methods.
An adenoviral vector containing human SPARC was used to increase SPARC expression in human TM endothelial cells and perfused human anterior segments using multiplicities of infection (MOIs) 25 or 50. Total RNA from TM was used for quantitative PCR, while protein from cell lysates and conditioned media were used for immunoblot analyses and zymography. After completion of perfusion, the anterior segments were fixed, sectioned, and examined by light and confocal microscopy.
Results.
SPARC overexpression increased the IOP of perfused human anterior segments. Fibronectin and collagens IV and I protein levels were elevated in both TM cell cultures and within the juxtacanalicular (JCT) region of perfused anterior segments. Collagen VI and laminin protein levels were increased in TM cell cultures but not in perfused anterior segments. The protein levels of pro-MMP-9 decreased while the kinetic inhibitors of metalloproteinases, TIMP-1 and PAI-1 protein levels, increased at MOI 25. At MOI 50, the protein levels of pro-MMP-1, -3, and -9 also decreased while PAI-1 and TIMP-1 and -3 increased. Only MMP-9 activity was decreased on zymography. mRNA levels of the collagens, fibronectin, and laminin were not affected by SPARC overexpression.
Conclusions.
SPARC overexpression increases IOP in perfused cadaveric human anterior segments resulting from a qualitative change the JCT ECM. Selective decrease of MMP-9 activity is likely part of the mechanism. SPARC is a regulatory node for IOP.
Overexpression of SPARC increases IOP in perfused human anterior segments. An increase of fibronectin, collagens IV and I in the juxtacanalicular trabecular meshwork (TM) is seen. In TM cells, alterations in matrix metalloproteinases (MMPs) and inhibitors results in a decreased MMP-9 activity.
doi:10.1167/iovs.12-11362
PMCID: PMC3648228  PMID: 23599341
SPARC; adenovirus; matrix metalloproteinases; tissue inhibitors of matrix metalloproteinases; extracellular matrix; intraocular pressure; perfused anterior segment system
5.  Expression of integrin-linked kinase in the murine lens is consistent with its role in epithelial-mesenchymal transition of lens epithelial cells in vitro 
Molecular Vision  2007;13:707-718.
Purpose
To evaluate the expression and location of integrin-linked kinase (ILK) within the mouse lens and to characterize the role of this protein during mouse lens epithelial cells (LEC) differentiation in vitro.
Methods
Transcription levels of ILK mRNA were determined by RT-PCR in cultured cells and lens tissue. ILK protein was detected by immunoblotting, immunocytochemistry, immunohistochemistry, and immunoprecipitation. A role for ILK in the outgrowth of LEC from dissected mouse lens explants was determined by the use of ILK short interfering RNA (siRNA). Affinity-purified polyclonal anti-recombinant human ILK IgG was prepared and characterized for these experiments. A comparison of several anti-ILK antibodies was performed by immunoblotting, immunoprecipitation, and ELISA.
Results
ILK was transcribed in LEC and lens fiber cells in vivo. ILK protein was expressed in the differentiating LEC at the equatorial region of the lens and, to a lesser extent, within the cortical and nuclear fiber cells. LEC in vitro produced copious ILK, which exhibited a filamentous pattern throughout the cytoplasm. The expression of ILK was increased during epithelial-mesenchymal-transition (EMT) of LEC from lens explants, whereas inhibition of ILK by siRNA delayed expression of the EMT markers smooth muscle α-actin and fibronectin.
Conclusions
Analysis of ILK expression, localization, and activity in the mouse lens and cultured LEC is substantially facilitated by the generation of a multi-functional, polyclonal, affinity-purified anti-ILK antibody. Expressed in most tissues and cells lines, ILK is unexpectedly restricted to the equatorial LEC and differentiated fiber cells of the mouse lens. The occurrence of ILK expression with LEC differentiation is consistent with the positive regulatory function of ILK, which is revealed in a model of EMT in vitro. This is the first study to show the expression of ILK in the lens and its unique distribution pattern within cultured lens epithelia.
PMCID: PMC2765468  PMID: 17563721
6.  Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM 
Journal of Clinical Investigation  2003;111(4):487-495.
SPARC, a 32-kDa glycoprotein, participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell-matrix interactions. Major functions defined for SPARC in vitro are de-adhesion and antiproliferation. In vivo, SPARC is restricted in its expression to remodeling tissues, including pathologies such as cancer. However, the function of endogenous SPARC in tumor growth and progression is not known. Here, we report that implanted tumors grew more rapidly in mice lacking SPARC. We observed that tumors grown in SPARC null mice showed alterations in the production and organization of ECM components and a decrease in the infiltration of macrophages. However, there was no change in the levels of angiogenic growth factors in comparison to tumors grown in wild-type mice, although there was a statistically significant difference in total vascular area. Whereas SPARC did inhibit the growth of tumor cells in vitro, it did not have a demonstrable effect on the proliferation or apoptosis of tumor cells in vivo. These data indicate that host-derived SPARC is important for the appropriate organization of the ECM in response to implanted tumors and highlight the importance of the ECM in regulating tumor growth.
doi:10.1172/JCI200316804
PMCID: PMC151926  PMID: 12588887
7.  SPARC Fusion Protein Induces Cellular Adhesive Signaling 
PLoS ONE  2013;8(1):e53202.
Secreted protein, acidic and rich in cysteine (SPARC) has been described as a counteradhesive matricellular protein with a diversity of biological functions associated with morphogenesis, remodeling, cellular migration, and proliferation. We have produced mouse SPARC with a FLAG-tag at the N-terminus of SPARC (Flag-SPARC, FSP) in a Bac-to-Bac baculoviral expression system. After affinity purification, this procedure yields SPARC of high purity, with an electrophoretic mobility of ∼44 kDa under reducing conditions, and ∼38–39 kDa under non-reducing conditions. Unexpectedly, FSP adsorbed to plastic supported cell attachment and spreading, in a calcium-dependent manner. The adhesive activity of native FSP was inhibited by prior incubation with anti-SPARC IgG. Cell adhesion to FSP induced the formation of filopodia and lamellipodia but not focal adhesions that were prominent on cells that were attached to fibronectin. In addition, FSP induced the tyrosine phosphorylation of FAK and paxillin in attached epithelial cells. Erk1/2 and Rac were also activated in cells attached to FSP, but at a lower level in comparison to cells on fibronectin. This study provides new insight into the biological functions of SPARC, a matricellular protein with important roles in cell-extracellualr matrix interactions.
doi:10.1371/journal.pone.0053202
PMCID: PMC3549909  PMID: 23349702
9.  Disruption of the thrombospondin-2 gene alters the lamellar morphology but does not permit vascularization of the adult mouse lumbar disc 
Introduction
The biological basis for the avascular state of the intervertebral disc is not well understood. Previous work has suggested that the presence of thrombospondin-1 (TSP-1), a matricellular protein, in the outer annulus reflects a role for this protein in conferring an avascular status to the disc. In the present study we have examined thrombospondin-2 (TSP-2), a matricellular protein with recognized anti-angiogenic activity in vivo and in vitro.
Methods
We examined both the location and expression of TSP-2 in the human disc, and its location in the disc and bordering soft tissues of 5-month-old normal wild-type (WT) mice and of mice with a targeted disruption of the TSP-2 gene. Immunohistochemistry and quantitative histology were utilized in this study.
Results
TSP-2 was found to be present in some, but not all, annulus cells of the human annulus and the mouse annulus. Although there was no difference in the number of disc cells in the annulus of TSP-2-null mice compared with that of WT animals, polarized light microscopy revealed a more irregular lamellar collagen structure in null mouse discs compared with WT mouse discs. Additionally, vascular beds at the margins of discs of TSP-2-null mice were substantially more irregular than those of WT animals. Counts of platelet endothelial cell adhesion molecule-1-positive blood vessels in the tissue margin bordering the ventral annulus showed a significantly larger vascular bed in the tissue bordering the disc of TSP-2-null mice compared with that of WT mice (P = 0.0002). There was, however, no vascular ingrowth into discs of the TSP-2-null mice.
Conclusion
These data confirm a role for TSP-2 in the morphology of the disc and suggest the presence of other inhibitors of angiogenesis in the disc. We have shown that although an increase in vasculature was present in the TSP-2-null tissue in the margin of the disc, vascular ingrowth into the body of the disc did not occur. Our results point to the need for future research to understand the transition from the well-vascularized status of the fetal and young discs to the avascular state of the adult human disc or the small mammalian disc.
doi:10.1186/ar2483
PMCID: PMC2575610  PMID: 18718009
10.  Behavioural signs of chronic back pain in the SPARC-null mouse 
Spine  2011;36(2):95-102.
Study Design
SPARC-null mice were examined for behavioural signs of chronic low back and/or radicular pain.
Objective
To assess SPARC-null mice as a rodent model of chronic low back and/or radicular pain due to degenerative disc disease.
Summary of Background Data
Degeneration of intervertebral discs is a major cause of chronic low back and radicular pain in humans. Inactivation of the SPARC (Secreted Protein, Acidic and Rich in Cysteine, also known as osteonectin and BM-40) gene in mice results in premature intervertebral disc degeneration. The impact of disc degeneration on behavioural measures of chronic pain has not been evaluated in this model.
Methods
Cohorts of young and old (3 and 6-12 months, respectively) SPARC-null and wild-type control mice were screened for behavioural indices of low back and/or radiating pain. Sensitivity to mechanical, cold and heat stimuli, locomotor impairment, and movement-evoked hypersensitivity were determined. Animals were challenged with three analgesic agents with different mechanisms: morphine, dexamethasone, and gabapentin.
Results
SPARC-null mice showed signs of movement-evoked discomfort as early as 3 months of age. Hypersensitivity to cold stimuli on both the lower back and hindpaws developed with increasing age. SPARC-null mice had normal sensitivity to tactile and heat stimuli, and locomotor skills were not impaired. The hypersensitivity to cold was reversed by morphine, but not by dexamethasone or gabapentin.
Conclusion
SPARC-null mice display behavioural signs consistent with chronic low back and radicular pain that we attribute to intervertebral disc degeneration. We predict that the SPARC-null mouse is a useful model of chronic back pain due to degenerative disc disease.
doi:10.1097/BRS.0b013e3181cd9d75
PMCID: PMC3007098  PMID: 20714283
back pain; animal model; osteonectin; degenerative disc disease; BM-40; matricellular
11.  Behavioural signs of chronic back pain in the SPARC-null mouse 
Spine  2011;36(2):95-102.
Study Design
SPARC-null mice were examined for behavioural signs of chronic low back and/or radicular pain.
Objective
To assess SPARC-null mice as a rodent model of chronic low back and/or radicular pain due to degenerative disc disease.
Summary of Background Data
Degeneration of intervertebral discs is a major cause of chronic low back and radicular pain in humans. Inactivation of the SPARC (Secreted Protein, Acidic and Rich in Cysteine, also known as osteonectin and BM-40) gene in mice results in premature intervertebral disc degeneration. The impact of disc degeneration on behavioural measures of chronic pain has not been evaluated in this model.
Methods
Cohorts of young and old (3 and 6–12 months, respectively) SPARC-null and wild-type control mice were screened for behavioural indices of low back and/or radiating pain. Sensitivity to mechanical, cold and heat stimuli, locomotor impairment, and movement-evoked hypersensitivity were determined. Animals were challenged with three analgesic agents with different mechanisms: morphine, dexamethasone, and gabapentin.
Results
SPARC-null mice showed signs of movement-evoked discomfort as early as 3 months of age. Hypersensitivity to cold stimuli on both the lower back and hindpaws developed with increasing age. SPARC-null mice had normal sensitivity to tactile and heat stimuli, and locomotor skills were not impaired. The hypersensitivity to cold was reversed by morphine, but not by dexamethasone or gabapentin.
Conclusion
SPARC-null mice display behavioural signs consistent with chronic low back and radicular pain that we attribute to intervertebral disc degeneration. We predict that the SPARC-null mouse is a useful model of chronic back pain due to degenerative disc disease.
doi:10.1097/BRS.0b013e3181cd9d75
PMCID: PMC3007098  PMID: 20714283 CAMSID: cams1525
back pain; animal model; osteonectin; degenerative disc disease; BM-40; matricellular
12.  A Novel GGA-Binding Site Is Required for Intracellular Sorting Mediated by Stabilin-1▿  
Molecular and Cellular Biology  2009;29(22):6097-6105.
Stabilin-1 is a unique scavenger receptor that combines endocytic and intracellular sorting functions in macrophages. Stabilin-1 mediates the endocytosis of acetylated low-density lipoprotein (acLDL), SPARC, and growth hormone family member placental lactogen (PL). At the same time, stabilin-1 is involved in trans-Golgi network-to-endosome routing of the endogenous chitinase-like protein SI-CLP (stabilin-interacting chitinase-like protein). A DDSLL motif in the cytoplasmic tail of stabilin-1 interacts with GGA adaptors; however, the deletion of DDSLL reduces but does not abrogate this interaction. Here, we identified a novel GGA-binding site, EDDADDD, in the cytoplasmic tail of stabilin-1. The deletion of EDDADDD impaired and the deletion of both the DDSLL and EDDADDD sites abrogated the interaction of stabilin-1 with GGAs. The surface exposure of stabilin-1 and stabilin-1-mediated endocytosis of acLDL, SPARC, and PL were not affected by the deletion either of DDSLL or EDDADDD or both. At the same time, both GGA-binding sites were necessary for the intracellular sorting of SI-CLP performed by stabilin-1. Our data indicate that the novel GGA-binding site EDDADDD is essential for stabilin-1-mediated intracellular sorting but is not required for endocytosis.
doi:10.1128/MCB.00505-09
PMCID: PMC2772567  PMID: 19752197
13.  Extracellular and Intracellular Mechanisms Mediating Metastatic Activity of Exogenous Osteopontin 
Cancer  2009;115(8):1753-1764.
BACKGROUND
Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. We used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis.
METHODS
Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo designed to test extracellular and intracellular mechanisms involved in experimental metastasis.
RESULTS
In the extracellular environment, we confirm that soluble osteopontin is required for its pro-metastatic effects; this phenomenon is specific, RGD-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induces rapid Tyr-418 dephosphorylation of c-Src, with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation is followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site.
CONCLUSION
Our results reveal a complex molecular interaction as well as a dual role for osteopontin in metastasis that is dependent on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to anti-metastasis strategies.
doi:10.1002/cncr.24170
PMCID: PMC2743165  PMID: 19224553
c-Src; endothelium; metastasis; osteopontin
14.  Increased expression of osteonectin/SPARC mRNA and protein in age-related human cataracts and spatial expression in the normal human lens 
Molecular vision  2000;6:24-29.
Purpose
We have previously reported increased levels of Osteonectin/SPARC transcript in age-related cataractous compared to normal human lenses. The purpose of the present study was to evaluate the corresponding levels of osteonectin/SPARC protein in age-related cataractous relative to normal lenses and to evaluate the levels of osteonectin/SPARC transcript in specific types of age-related human cataracts. The spatial expression of osteonectin/SPARC was also evaluated in normal human lenses.
Methods
Specific types of age-related cataracts were collected and graded. Normal human lenses were microdissected into epithelia and fibers. Osteonectin/SPARC protein levels were monitored by Western immunoblotting, and transcript levels were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR). Osteonectin/SPARC expression patterns were examined by RT-PCR and by immunostaining.
Results
Higher levels of osteonectin/SPARC protein were detected in age-related cataractous relative to normal human lenses. Increased levels of osteonectin/SPARC transcript were also detected in posterior-subcapsular and nuclear cataractous lenses relative to normal lenses. Osteonectin/SPARC transcripts were detected in the lens epithelium but not fibers. Osteonectin/SPARC protein levels were highest in the peripheral lens epithelium.
Conclusions
Consistent with our previous studies on osteonectin/SPARC mRNA levels, osteonectin/SPARC protein levels were also elevated in cataractous compared to normal human lenses. Increased levels of osteonectin/SPARC mRNA were also found in nuclear and posterior-subcapsular cataracts relative to normal lenses. Osteonectin/SPARC expression is confined to the lens epithelium, and osteonectin/SPARC levels are highest in the peripheral lens epithelium.
PMCID: PMC2831409  PMID: 10756178
15.  SPARC Deficiency Results in Improved Surgical Survival in a Novel Mouse Model of Glaucoma Filtration Surgery 
PLoS ONE  2010;5(2):e9415.
Glaucoma is a disease frequently associated with elevated intraocular pressure that can be alleviated by filtration surgery. However, the post-operative subconjunctival scarring response which blocks filtration efficiency is a major hurdle to the achievement of long-term surgical success. Current application of anti-proliferatives to modulate the scarring response is not ideal as these often give rise to sight-threatening complications. SPARC (secreted protein, acidic and rich in cysteine) is a matricellular protein involved in extracellular matrix (ECM) production and organization. In this study, we investigated post-operative surgical wound survival in an experimental glaucoma filtration model in SPARC-null mice. Loss of SPARC resulted in a marked (87.5%) surgical wound survival rate compared to 0% in wild-type (WT) counterparts. The larger SPARC-null wounds implied that aqueous filtration through the subconjunctival space was more efficient in comparison to WT wounds. The pronounced increase in both surgical survival and filtration efficiency was associated with a less collagenous ECM, smaller collagen fibril diameter, and a loosely-organized subconjunctival matrix in the SPARC-null wounds. In contrast, WT wounds exhibited a densely packed collagenous ECM with no evidence of filtration capacity. Immunolocalization assays confirmed the accumulation of ECM proteins in the WT but not in the SPARC-null wounds. The observations in vivo were corroborated by complementary data performed on WT and SPARC-null conjunctival fibroblasts in vitro. These findings indicate that depletion of SPARC bestows an inherent change in post-operative ECM remodeling to favor wound maintenance. The evidence presented in this report is strongly supportive for the targeting of SPARC to increase the success of glaucoma filtration surgery.
doi:10.1371/journal.pone.0009415
PMCID: PMC2828474  PMID: 20195533
16.  Thrombospondins in the heart: potential functions in cardiac remodeling 
Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell–matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease.
doi:10.1007/s12079-009-0070-6
PMCID: PMC2778589  PMID: 19798592
Matricellular proteins; Thrombospondin; Heart failure; Hypertrophy; Myocardial infarction
17.  SPARC functions as an inhibitor of adipogenesis 
Adipogenesis, a key step in the pathogenesis of obesity, involves extensive ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. Matricellular proteins regulate cell-cell and cell-ECM interactions. Evidence in vivo and in vitro indicates that the prototypic matricellular protein, SPARC, inhibits adipogenesis and promotes osteoblastogenesis. Herein we discuss mechanisms underlying the inhibitory effect of SPARC on adipogenesis. SPARC enhances the Wnt/β-catenin signaling pathway and regulates the expression and posttranslational modification of collagen. SPARC might drive preadipocytes away from the status of growth arrest and therefore prevent terminal differentiation. SPARC could also decrease WAT deposition through its negative effects on angiogenesis. Therefore, several stages of white adipose tissue accumulation are sensitive to the inhibitory effects of SPARC.
doi:10.1007/s12079-009-0064-4
PMCID: PMC2778584  PMID: 19798596
SPARC; Adipocyte; Obesity; Collagen; Wnt; β-catenin; Angiogenesis
18.  SPARC functions as an inhibitor of adipogenesis 
Adipogenesis, a key step in the pathogenesis of obesity, involves extensive ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. Matricellular proteins regulate cell-cell and cell-ECM interactions. Evidence in vivo and in vitro indicates that the prototypic matricellular protein, SPARC, inhibits adipogenesis and promotes osteoblastogenesis. Herein we discuss mechanisms underlying the inhibitory effect of SPARC on adipogenesis. SPARC enhances the Wnt/β-catenin signaling pathway and regulates the expression and posttranslational modification of collagen. SPARC might drive preadipocytes away from the status of growth arrest and therefore prevent terminal differentiation. SPARC could also decrease WAT deposition through its negative effects on angiogenesis. Therefore, several stages of white adipose tissue accumulation are sensitive to the inhibitory effects of SPARC.
doi:10.1007/s12079-009-0064-4
PMCID: PMC2778584  PMID: 19798596
SPARC; Adipocyte; Obesity; Collagen; Wnt; β-catenin; Angiogenesis
19.  Thrombospondins in the heart: potential functions in cardiac remodeling 
Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell–matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease.
doi:10.1007/s12079-009-0070-6
PMCID: PMC2778589  PMID: 19798592
Matricellular proteins; Thrombospondin; Heart failure; Hypertrophy; Myocardial infarction
20.  Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction 
The matricellular protein SPARC (secreted protein, acidic and rich in cysteine, also known as osteonectin) mediates cell–matrix interactions during wound healing and regulates the production and/or assembly of the extracellular matrix (ECM). This study investigated whether SPARC functions in infarct healing and ECM maturation after myocardial infarction (MI). In comparison with wild-type (WT) mice, animals with a targeted inactivation of SPARC exhibited a fourfold increase in mortality that resulted from an increased incidence of cardiac rupture and failure after MI. SPARC-null infarcts had a disorganized granulation tissue and immature collagenous ECM. In contrast, adenoviral overexpression of SPARC in WT mice improved the collagen maturation and prevented cardiac dilatation and dysfunction after MI. In cardiac fibroblasts in vitro, reduction of SPARC by short hairpin RNA attenuated transforming growth factor β (TGF)–mediated increase of Smad2 phosphorylation, whereas addition of recombinant SPARC increased Smad2 phosphorylation concordant with increased Smad2 phosphorylation in SPARC-treated mice. Importantly, infusion of TGF-β rescued cardiac rupture in SPARC-null mice but did not significantly alter infarct healing in WT mice. These findings indicate that local production of SPARC is essential for maintenance of the integrity of cardiac ECM after MI. The protective effects of SPARC emphasize the potential therapeutic applications of this protein to prevent cardiac dilatation and dysfunction after MI.
doi:10.1084/jem.20081244
PMCID: PMC2626676  PMID: 19103879
21.  Automated, Computerized, Feature-Based Phenotype Analysis of Slit Lamp Images of the Mouse Lens 
Experimental eye research  2007;86(4):562-575.
Longitudinal studies of a variety of transgenic mouse models for lens development can create substantial challenges in database management and analysis. We report a novel, automated, feature-based informatics approach to screening lens phenotypes in a large database of slit lamp images. Digital slit lamp images of normal and abnormal lenses in eyes of wild type (wt), SC1 null and SPARC null transgenic mice were recorded for quantitative evaluation of their structural phenotype. The images were processed to improve the contrast of structural features that corresponded to rings of opacity and fluctuations in scattering intensity in the lenses. Measurable attributes were assigned to the features in the lens images and given as an output vector of 46 dimensions. Characteristic patterns correlated with the structural phenotype of each mutant and wt lens and a statistical fit for each phenotype was defined. The genotype was identified correctly in nearly 85% of the slit lamp images on the basis of an automated computer analysis of the lens structural phenotype. The automated computer algorithm has the potential to evaluate a large database of slit lamp images and distinguish mouse genotypes on the basis of lens phenotypes objectively using a neural network analysis of the structural features observed in the slit lamp images. The neural network approach is a promising technology for objective evaluation of genotype/phenotype relationships based on structural features and light scattering in lenses. Further improvements in the automated method can be expected to simplify and increase the accuracy and efficiency of the feature based analysis of structural phenotypes linked to genetic variation.
doi:10.1016/j.exer.2007.11.019
PMCID: PMC2674242  PMID: 18304532
informatics; phenotype; genotype; slit lamp; imaging; lens
22.  Compositional Differences between Infant and Adult Human Corneal Basement Membranes 
Purpose
Adult human corneal epithelial basement membrane (EBM) and Descemet's membrane (DM) components exhibit heterogeneous distribution. The purpose of the study was to identify changes of these components during postnatal corneal development.
Methods
Thirty healthy adult corneas and 10 corneas from 12-day- to 3-year-old children were studied by immunofluorescence with antibodies against BM components.
Results
Type IV collagen composition of infant corneal central EBM over Bowman's layer changed from α1-α2 to α3-α4 chains after 3 years of life; in the adult, α1-α2 chains were retained only in the limbal BM. Laminin α2 and β2 chains were present in the adult limbal BM where epithelial stem cells are located. By 3 years of age, β2 chain appeared in the limbal BM. In all corneas, limbal BM contained laminin γ3 chain. In the infant DM, type IV collagen α1-α6 chains, perlecan, nidogen-1, nidogen-2, and netrin-4 were found on both faces, but they remained only on the endothelial face of the adult DM. The stromal face of the infant but not the adult DM was positive for tenascin-C, fibrillin-1, SPARC, and laminin-332. Type VIII collagen shifted from the endothelial face of infant DM to its stromal face in the adult. Matrilin-4 largely disappeared after the age of 3 years.
Conclusions
The distribution of laminin γ3 chain, nidogen-2, netrin-4, matrilin-2, and matrilin-4 is described in the cornea for the first time. The observed differences between adult and infant corneal BMs may relate to changes in their mechanical strength, corneal cell adhesion and differentiation in the process of postnatal corneal maturation.
doi:10.1167/iovs.07-0654
PMCID: PMC2151758  PMID: 17962449
23.  Molecular Pathway for Cancer Metastasis to Bone* 
The Journal of biological chemistry  2003;278(40):39044-39050.
The molecular mechanism leading to the cancer metastasis to bone is poorly understood but yet determines prognosis and therapy. Here, we define a new molecular pathway that may account for the extraordinarily high osteotropism of prostate cancer. By using SPARC (secreted protein, acidic and rich in cysteine)-deficient mice and recombinant SPARC, we demonstrated that SPARC selectively supports the migration of highly metastatic relative to less metastatic prostate cancer cell lines to bone. Increased migration to SPARC can be traced to the activation of integrins αvβ and αvβ5 on tumor cells. Such activation is induced by an autocrine vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-2 loop on the tumor cells, which also supports the growth and proliferation of prostate cancer cells. A consequence of SPARC recognition by αvβ5 is enhanced VEGF production. Thus, prostate cancer cells expressing VEGF/VEGFR-2 will activate αvβ5 and αvβ5 on their surface and use these integrins to migrate toward SPARC in bone. Within the bone environment, SPARC engagement of these integrins will stimulate growth of the tumor and further production of VEGF to support neoangiogenesis, thereby favoring the development of the metastatic tumor. Supporting this model, activated integrins were found to colocalize with VEGFR-2 in tissue samples of metastatic prostate tumors from patients.
doi:10.1074/jbc.M304494200
PMCID: PMC1459419  PMID: 12885781
24.  A secreted isoform of ErbB3 promotes osteonectin expression in bone and enhances the invasiveness of prostate cancer cells 
Cancer research  2007;67(14):6544-6548.
The propensity for prostate cancer to metastasize to bone led us and others to propose that bidirectional interactions between prostate cancer cells and bone are critical for the preferential metastasis of prostate cancer to bone. We previously identified a secreted isoform of ErbB3 (p45-sErbB3) in bone marrow supernatant samples from men with prostate cancer and bone metastasis and showed by immunohistochemical analysis of human tissue specimens that p45-sErbB3 was highly expressed in metastatic prostate cancer cells in bone Here we show that p45-sErbB3 stimulated mouse calvaria to secrete factors that increased the invasiveness of prostate cancer cells in a Boyden chamber invasion assay. Using gene array analysis to identify p45-sErbB3–responsive genes, we found that p45-sErbB3 upregulated expression of osteonectin/SPARC, biglycan, and type I collagen in calvaria. We further show that recombinant osteonectin increased the invasiveness of PC-3 cells, whereas osteonectin-neutralizing antibodies blocked this p45-sErbB3–induced invasiveness. These results indicate that p45-sErbB3 enhances the invasiveness of PC-3 cells in part by stimulating the secretion of osteonectin by bone. Thus, p45-sErbB3 may mediate the bidirectional interactions between prostate cancer cells and bone via osteonectin.
doi:10.1158/0008-5472.CAN-07-1330
PMCID: PMC2000837  PMID: 17638862
prostate cancer; bone metastasis; p45-sErbB3; osteonectin; SPARC
25.  Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin 
Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of 5 human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities.
doi:10.1016/j.toxicon.2006.12.013
PMCID: PMC1948081  PMID: 17316731
Disintegrin; Integrin; Melanoma; Migration; Fibronectin; Extracellular Matrix; Alanine mutations

Results 1-25 (29)