PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A New Model of Development of the Mammalian Ovary and Follicles 
PLoS ONE  2013;8(2):e55578.
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.
doi:10.1371/journal.pone.0055578
PMCID: PMC3567121  PMID: 23409002
2.  Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis 
Arthritis Research & Therapy  2010;12(4):R133.
Introduction
The purpose of this study was to investigate the profile of histone deacetylase (HDAC) expression in the synovial tissue of rheumatoid arthritis (RA) compared with that of normal control and osteoarthritis (OA), and to examine whether there is a link between HDAC activity and synovial inflammation.
Methods
HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of total synovial tissue surgically obtained from normal, OA and RA joints. The level of cytoplasmic tumor necrosis factor a (TNFα) fraction was measured by ELISA. Total RNA of synovial tissue was used for RT-PCR of HDAC1-8. In synovial fibroblasts from RA (RASFs), the effects of TNFα on nuclear HDAC activity and class I HDACs (1, 2, 3, 8) mRNA expressions were examined by quantitative real-time PCR. The protein expression and distribution of class I HDACs were examined by Western blotting.
Results
Nuclear HDAC activity was significantly higher in RA than in OA and normal controls and correlated with the amount of cytoplasmic TNFα. The mRNA expression of HDAC1 in RA synovial tissue was higher than in OA and normal controls, and showed positive correlation with TNFα mRNA expression. The protein level of nuclear HDAC1 was higher in RA synovial tissue compared with OA synovial tissue. Stimulation with TNFα significantly increased the nuclear HDAC activity and HDAC1 mRNA expression at 24 hours and HDAC1 protein expression at 48 hours in RASFs.
Conclusions
Our results showed nuclear HDAC activity and expression of HDAC1 were significantly higher in RA than in OA synovial tissues, and they were upregulated by TNFα stimulation in RASFs. These data might provide important clues for the development of specific small molecule HDAC inhibitors.
doi:10.1186/ar3071
PMCID: PMC2945023  PMID: 20609223
3.  Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice 
Cell and Tissue Research  2009;339(3):613-624.
Despite the mouse being an important laboratory species, little is known about changes in its extracellular matrix (ECM) during follicle and corpora lutea formation and regression. Follicle development was induced in mice (29 days of age/experimental day 0) by injections of pregnant mare’s serum gonadotrophin on days 0 and 1 and ovulation was induced by injection of human chorionic gonadotrophin on day 2. Ovaries were collected for immunohistochemistry (n=10 per group) on days 0, 2 and 5. Another group was mated and ovaries were examined on day 11 (n=7). Collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2 and perlecan were present in the follicular basal lamina of all developmental stages. Collagen type XVIII was only found in basal lamina of primordial, primary and some preantral follicles, whereas laminin α2 was only detected in some preantral and antral follicles. The focimatrix, a specialised matrix of the membrana granulosa, contained collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. In the corpora lutea, staining was restricted to capillary sub-endothelial basal laminas containing collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. Laminins α4 and α5 were not immunolocalised to any structure in the mouse ovary. The ECM composition of the mouse ovary has similarities to, but also major differences from, other species with respect to nidogens 1 and 2 and perlecan.
doi:10.1007/s00441-009-0905-8
PMCID: PMC2831189  PMID: 20033213
Follicle; Corpus luteum; Extracellular matrix; Collagen; Laminin; Perlecan; Nidogen; Mouse (CBAxC57BL/6F1)
4.  Compositional Differences between Infant and Adult Human Corneal Basement Membranes 
Purpose
Adult human corneal epithelial basement membrane (EBM) and Descemet's membrane (DM) components exhibit heterogeneous distribution. The purpose of the study was to identify changes of these components during postnatal corneal development.
Methods
Thirty healthy adult corneas and 10 corneas from 12-day- to 3-year-old children were studied by immunofluorescence with antibodies against BM components.
Results
Type IV collagen composition of infant corneal central EBM over Bowman's layer changed from α1-α2 to α3-α4 chains after 3 years of life; in the adult, α1-α2 chains were retained only in the limbal BM. Laminin α2 and β2 chains were present in the adult limbal BM where epithelial stem cells are located. By 3 years of age, β2 chain appeared in the limbal BM. In all corneas, limbal BM contained laminin γ3 chain. In the infant DM, type IV collagen α1-α6 chains, perlecan, nidogen-1, nidogen-2, and netrin-4 were found on both faces, but they remained only on the endothelial face of the adult DM. The stromal face of the infant but not the adult DM was positive for tenascin-C, fibrillin-1, SPARC, and laminin-332. Type VIII collagen shifted from the endothelial face of infant DM to its stromal face in the adult. Matrilin-4 largely disappeared after the age of 3 years.
Conclusions
The distribution of laminin γ3 chain, nidogen-2, netrin-4, matrilin-2, and matrilin-4 is described in the cornea for the first time. The observed differences between adult and infant corneal BMs may relate to changes in their mechanical strength, corneal cell adhesion and differentiation in the process of postnatal corneal maturation.
doi:10.1167/iovs.07-0654
PMCID: PMC2151758  PMID: 17962449
5.  Osteogenic protein-1 reduces intercellular adhesion molecule-1 messenger RNA expression, infarct size and TUNEL-positive cardiomyocytes in ischemia/reperfusion rat hearts 
BACKGROUND:
Osteogenic protein, a member of the transforming growth factor-beta superfamily, has been reported to decrease the expression of intercellular adhesive molecules and prevent neutrophil accumulation and activity in tissue injury.
OBJECTIVE:
To examine the effects of osteogenic protein on ischemia/reperfusion in rat hearts.
METHODS:
Reperfusion was established after a 90 min ligation of the proximal left coronary artery in rats. Recombinant human osteogenic protein-1 (200 μg/kg) was administered via the femoral vein just before reperfusion. Intercellular adhesion molecule-1 (ICAM-1) messenger RNA (mRNA) expression and infarct size were evaluated using Northern blotting and triphenyl tetrazolium chloride staining, respectively. Terminal deoxynucleotidyl transferase mediated biotin-16-2′-deoxyuridine-5′-triphosphate nick end labeling (TUNEL) staining was also performed.
RESULTS:
In osteogenic protein-1 treated rats, the expression of ICAM-1 mRNA in ischemia/reperfusion hearts rapidly increased 4 h after reperfusion, although, the increase was lower than that observed in the vehicle-treated hearts (7.4±1.6-fold versus 14.6±3.7-fold increase compared to the increase observed in preligation control hearts, respectively). Similarly, in day 1 and day 7 hearts, the increase in ICAM-1 mRNA expression was significantly lower in ischemia/reperfusion hearts from rats treated with osteogenic protein-1 than in vehicle-treated rats (2.5±0.1-fold versus 5.8±2.3-fold and 1.5±0.3-fold versus 3.5±0.2-fold, respectively). Infarct size in rats treated with osteogenic protein-1 was significantly smaller than that observed in rats treated with vehicle (13.1±1.2% versus 28.5±5.7% of the left ventricle, P<0.01). The percentage of TUNEL-positive cardiomyocytes in ischemia/reperfusion hearts in rats treated with osteogenic protein-1 was significantly lower than in rats treated with vehicle (17.1±5.3% versus 31.1±4.5%, P<0.01).
CONCLUSION:
The present study demonstrated that recombinant human osteogenic protein-1 suppressed ICAM-1 mRNA expression, reduced infarct size and decreased TUNEL-positive cardiomyocytes in ischemic/reperfused rat hearts.
PMCID: PMC2719155  PMID: 19649220
Apoptosis; Inflammation; Ischemic heart disease; Matrix protein; Molecular biology

Results 1-5 (5)