PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Laminin-211 in skeletal muscle function 
Cell Adhesion & Migration  2013;7(1):111-121.
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.
doi:10.4161/cam.22618
PMCID: PMC3544775  PMID: 23154401
basement membrane; dystroglycan; integrin; laminin; muscle force; sarcolemma; skeletal muscle
2.  Laminin α2 Chain-Deficiency is Associated with microRNA Deregulation in Skeletal Muscle and Plasma 
microRNAs (miRNAs) are widespread regulators of gene expression, but little is known of their potential roles in congenital muscular dystrophy type 1A (MDC1A). MDC1A is a severe form of muscular dystrophy caused by mutations in the gene encoding laminin α2 chain. To gain insight into the pathophysiological roles of miRNAs associated with MDC1A pathology, laminin α2 chain-deficient mice were evaluated by quantitative PCR. We demonstrate that expression of muscle-specific miR-1, miR-133a, and miR-206 is deregulated in laminin α2 chain-deficient muscle. Furthermore, expression of miR-223 and miR-21, associated with immune cell infiltration and fibrosis, respectively, is altered. Finally, we show that plasma levels of muscle-specific miRNAs are markedly elevated in laminin α2 chain-deficient mice and partially normalized in response to proteasome inhibition therapy. Altogether, our data suggest important roles for miRNAs in MDC1A pathology and we propose plasma levels of muscle-specific miRNAs as promising biomarkers for the progression of MDC1A.
doi:10.3389/fnagi.2014.00155
PMCID: PMC4080261  PMID: 25071564
fibrosis; inflammation; laminin; MDC1A; microRNA; muscular dystrophy
3.  Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy 
PLoS ONE  2013;8(6):e65831.
Duchenne muscular dystrophy (DMD) is the most common childhood myopathy, characterized by muscle loss and cardiorespiratory failure. While the genetic basis of DMD is well established, secondary mechanisms associated with dystrophic pathophysiology are not fully clarified yet. In order to obtain new insights into the molecular mechanisms of muscle dystrophy during earlier stages of the disease, we performed a comparative proteomic profile of the spared extraocular muscles (EOM) vs. affected diaphragm from the mdx mice, using a label based shotgun proteomic approach. Out of the 857 identified proteins, 42 to 62 proteins had differential abundance of peptide ions. The calcium-handling proteins sarcalumenin and calsequestrin-1 were increased in control EOM compared with control DIA, reinforcing the view that constitutional properties of EOM are important for their protection against myonecrosis. The finding that galectin-1 (muscle regeneration), annexin A1 (anti-inflammatory) and HSP 47 (fibrosis) were increased in dystrophic diaphragm provides novel insights into the mechanisms through which mdx affected muscles are able to counteract dystrophy, during the early stage of the disease. Overall, the shotgun technique proved to be suitable to perform quantitative comparisons between distinct dystrophic muscles and allowed the suggestion of new potential biomarkers and drug targets for dystrophinopaties.
doi:10.1371/journal.pone.0065831
PMCID: PMC3688818  PMID: 23823696
4.  Guidelines for the use and interpretation of assays for monitoring autophagy 
Klionsky, Daniel J. | Abdalla, Fabio C. | Abeliovich, Hagai | Abraham, Robert T. | Acevedo-Arozena, Abraham | Adeli, Khosrow | Agholme, Lotta | Agnello, Maria | Agostinis, Patrizia | Aguirre-Ghiso, Julio A. | Ahn, Hyung Jun | Ait-Mohamed, Ouardia | Ait-Si-Ali, Slimane | Akematsu, Takahiko | Akira, Shizuo | Al-Younes, Hesham M. | Al-Zeer, Munir A. | Albert, Matthew L. | Albin, Roger L. | Alegre-Abarrategui, Javier | Aleo, Maria Francesca | Alirezaei, Mehrdad | Almasan, Alexandru | Almonte-Becerril, Maylin | Amano, Atsuo | Amaravadi, Ravi K. | Amarnath, Shoba | Amer, Amal O. | Andrieu-Abadie, Nathalie | Anantharam, Vellareddy | Ann, David K. | Anoopkumar-Dukie, Shailendra | Aoki, Hiroshi | Apostolova, Nadezda | Arancia, Giuseppe | Aris, John P. | Asanuma, Katsuhiko | Asare, Nana Y.O. | Ashida, Hisashi | Askanas, Valerie | Askew, David S. | Auberger, Patrick | Baba, Misuzu | Backues, Steven K. | Baehrecke, Eric H. | Bahr, Ben A. | Bai, Xue-Yuan | Bailly, Yannick | Baiocchi, Robert | Baldini, Giulia | Balduini, Walter | Ballabio, Andrea | Bamber, Bruce A. | Bampton, Edward T.W. | Juhász, Gábor | Bartholomew, Clinton R. | Bassham, Diane C. | Bast, Robert C. | Batoko, Henri | Bay, Boon-Huat | Beau, Isabelle | Béchet, Daniel M. | Begley, Thomas J. | Behl, Christian | Behrends, Christian | Bekri, Soumeya | Bellaire, Bryan | Bendall, Linda J. | Benetti, Luca | Berliocchi, Laura | Bernardi, Henri | Bernassola, Francesca | Besteiro, Sébastien | Bhatia-Kissova, Ingrid | Bi, Xiaoning | Biard-Piechaczyk, Martine | Blum, Janice S. | Boise, Lawrence H. | Bonaldo, Paolo | Boone, David L. | Bornhauser, Beat C. | Bortoluci, Karina R. | Bossis, Ioannis | Bost, Frédéric | Bourquin, Jean-Pierre | Boya, Patricia | Boyer-Guittaut, Michaël | Bozhkov, Peter V. | Brady, Nathan R | Brancolini, Claudio | Brech, Andreas | Brenman, Jay E. | Brennand, Ana | Bresnick, Emery H. | Brest, Patrick | Bridges, Dave | Bristol, Molly L. | Brookes, Paul S. | Brown, Eric J. | Brumell, John H. | Brunetti-Pierri, Nicola | Brunk, Ulf T. | Bulman, Dennis E. | Bultman, Scott J. | Bultynck, Geert | Burbulla, Lena F. | Bursch, Wilfried | Butchar, Jonathan P. | Buzgariu, Wanda | Bydlowski, Sergio P. | Cadwell, Ken | Cahová, Monika | Cai, Dongsheng | Cai, Jiyang | Cai, Qian | Calabretta, Bruno | Calvo-Garrido, Javier | Camougrand, Nadine | Campanella, Michelangelo | Campos-Salinas, Jenny | Candi, Eleonora | Cao, Lizhi | Caplan, Allan B. | Carding, Simon R. | Cardoso, Sandra M. | Carew, Jennifer S. | Carlin, Cathleen R. | Carmignac, Virginie | Carneiro, Leticia A.M. | Carra, Serena | Caruso, Rosario A. | Casari, Giorgio | Casas, Caty | Castino, Roberta | Cebollero, Eduardo | Cecconi, Francesco | Celli, Jean | Chaachouay, Hassan | Chae, Han-Jung | Chai, Chee-Yin | Chan, David C. | Chan, Edmond Y. | Chang, Raymond Chuen-Chung | Che, Chi-Ming | Chen, Ching-Chow | Chen, Guang-Chao | Chen, Guo-Qiang | Chen, Min | Chen, Quan | Chen, Steve S.-L. | Chen, WenLi | Chen, Xi | Chen, Xiangmei | Chen, Xiequn | Chen, Ye-Guang | Chen, Yingyu | Chen, Yongqiang | Chen, Yu-Jen | Chen, Zhixiang | Cheng, Alan | Cheng, Christopher H.K. | Cheng, Yan | Cheong, Heesun | Cheong, Jae-Ho | Cherry, Sara | Chess-Williams, Russ | Cheung, Zelda H. | Chevet, Eric | Chiang, Hui-Ling | Chiarelli, Roberto | Chiba, Tomoki | Chin, Lih-Shen | Chiou, Shih-Hwa | Chisari, Francis V. | Cho, Chi Hin | Cho, Dong-Hyung | Choi, Augustine M.K. | Choi, DooSeok | Choi, Kyeong Sook | Choi, Mary E. | Chouaib, Salem | Choubey, Divaker | Choubey, Vinay | Chu, Charleen T. | Chuang, Tsung-Hsien | Chueh, Sheau-Huei | Chun, Taehoon | Chwae, Yong-Joon | Chye, Mee-Len | Ciarcia, Roberto | Ciriolo, Maria R. | Clague, Michael J. | Clark, Robert S.B. | Clarke, Peter G.H. | Clarke, Robert | Codogno, Patrice | Coller, Hilary A. | Colombo, María I. | Comincini, Sergio | Condello, Maria | Condorelli, Fabrizio | Cookson, Mark R. | Coombs, Graham H. | Coppens, Isabelle | Corbalan, Ramon | Cossart, Pascale | Costelli, Paola | Costes, Safia | Coto-Montes, Ana | Couve, Eduardo | Coxon, Fraser P. | Cregg, James M. | Crespo, José L. | Cronjé, Marianne J. | Cuervo, Ana Maria | Cullen, Joseph J. | Czaja, Mark J. | D'Amelio, Marcello | Darfeuille-Michaud, Arlette | Davids, Lester M. | Davies, Faith E. | De Felici, Massimo | de Groot, John F. | de Haan, Cornelis A.M. | De Martino, Luisa | De Milito, Angelo | De Tata, Vincenzo | Debnath, Jayanta | Degterev, Alexei | Dehay, Benjamin | Delbridge, Lea M.D. | Demarchi, Francesca | Deng, Yi Zhen | Dengjel, Jörn | Dent, Paul | Denton, Donna | Deretic, Vojo | Desai, Shyamal D. | Devenish, Rodney J. | Di Gioacchino, Mario | Di Paolo, Gilbert | Di Pietro, Chiara | Díaz-Araya, Guillermo | Díaz-Laviada, Inés | Diaz-Meco, Maria T. | Diaz-Nido, Javier | Dikic, Ivan | Dinesh-Kumar, Savithramma P. | Ding, Wen-Xing | Distelhorst, Clark W. | Diwan, Abhinav | Djavaheri-Mergny, Mojgan | Dokudovskaya, Svetlana | Dong, Zheng | Dorsey, Frank C. | Dosenko, Victor | Dowling, James J. | Doxsey, Stephen | Dreux, Marlène | Drew, Mark E. | Duan, Qiuhong | Duchosal, Michel A. | Duff, Karen E. | Dugail, Isabelle | Durbeej, Madeleine | Duszenko, Michael | Edelstein, Charles L. | Edinger, Aimee L. | Egea, Gustavo | Eichinger, Ludwig | Eissa, N. Tony | Ekmekcioglu, Suhendan | El-Deiry, Wafik S. | Elazar, Zvulun | Elgendy, Mohamed | Ellerby, Lisa M. | Eng, Kai Er | Engelbrecht, Anna-Mart | Engelender, Simone | Erenpreisa, Jekaterina | Escalante, Ricardo | Esclatine, Audrey | Eskelinen, Eeva-Liisa | Espert, Lucile | Espina, Virginia | Fan, Huizhou | Fan, Jia | Fan, Qi-Wen | Fan, Zhen | Fang, Shengyun | Fang, Yongqi | Fanto, Manolis | Fanzani, Alessandro | Farkas, Thomas | Farre, Jean-Claude | Faure, Mathias | Fechheimer, Marcus | Feng, Carl G. | Feng, Jian | Feng, Qili | Feng, Youji | Fésüs, László | Feuer, Ralph | Figueiredo-Pereira, Maria E. | Fimia, Gian Maria | Fingar, Diane C. | Finkbeiner, Steven | Finkel, Toren | Finley, Kim D. | Fiorito, Filomena | Fisher, Edward A. | Fisher, Paul B. | Flajolet, Marc | Florez-McClure, Maria L. | Florio, Salvatore | Fon, Edward A. | Fornai, Francesco | Fortunato, Franco | Fotedar, Rati | Fowler, Daniel H. | Fox, Howard S. | Franco, Rodrigo | Frankel, Lisa B. | Fransen, Marc | Fuentes, José M. | Fueyo, Juan | Fujii, Jun | Fujisaki, Kozo | Fujita, Eriko | Fukuda, Mitsunori | Furukawa, Ruth H. | Gaestel, Matthias | Gailly, Philippe | Gajewska, Malgorzata | Galliot, Brigitte | Galy, Vincent | Ganesh, Subramaniam | Ganetzky, Barry | Ganley, Ian G. | Gao, Fen-Biao | Gao, George F. | Gao, Jinming | Garcia, Lorena | Garcia-Manero, Guillermo | Garcia-Marcos, Mikel | Garmyn, Marjan | Gartel, Andrei L. | Gatti, Evelina | Gautel, Mathias | Gawriluk, Thomas R. | Gegg, Matthew E. | Geng, Jiefei | Germain, Marc | Gestwicki, Jason E. | Gewirtz, David A. | Ghavami, Saeid | Ghosh, Pradipta | Giammarioli, Anna M. | Giatromanolaki, Alexandra N. | Gibson, Spencer B. | Gilkerson, Robert W. | Ginger, Michael L. | Ginsberg, Henry N. | Golab, Jakub | Goligorsky, Michael S. | Golstein, Pierre | Gomez-Manzano, Candelaria | Goncu, Ebru | Gongora, Céline | Gonzalez, Claudio D. | Gonzalez, Ramon | González-Estévez, Cristina | González-Polo, Rosa Ana | Gonzalez-Rey, Elena | Gorbunov, Nikolai V. | Gorski, Sharon | Goruppi, Sandro | Gottlieb, Roberta A. | Gozuacik, Devrim | Granato, Giovanna Elvira | Grant, Gary D. | Green, Kim N. | Gregorc, Ales | Gros, Frédéric | Grose, Charles | Grunt, Thomas W. | Gual, Philippe | Guan, Jun-Lin | Guan, Kun-Liang | Guichard, Sylvie M. | Gukovskaya, Anna S. | Gukovsky, Ilya | Gunst, Jan | Gustafsson, Åsa B. | Halayko, Andrew J. | Hale, Amber N. | Halonen, Sandra K. | Hamasaki, Maho | Han, Feng | Han, Ting | Hancock, Michael K. | Hansen, Malene | Harada, Hisashi | Harada, Masaru | Hardt, Stefan E. | Harper, J. Wade | Harris, Adrian L. | Harris, James | Harris, Steven D. | Hashimoto, Makoto | Haspel, Jeffrey A. | Hayashi, Shin-ichiro | Hazelhurst, Lori A. | He, Congcong | He, You-Wen | Hébert, Marie-Josée | Heidenreich, Kim A. | Helfrich, Miep H. | Helgason, Gudmundur V. | Henske, Elizabeth P. | Herman, Brian | Herman, Paul K. | Hetz, Claudio | Hilfiker, Sabine | Hill, Joseph A. | Hocking, Lynne J. | Hofman, Paul | Hofmann, Thomas G. | Höhfeld, Jörg | Holyoake, Tessa L. | Hong, Ming-Huang | Hood, David A. | Hotamisligil, Gökhan S. | Houwerzijl, Ewout J. | Høyer-Hansen, Maria | Hu, Bingren | Hu, Chien-an A. | Hu, Hong-Ming | Hua, Ya | Huang, Canhua | Huang, Ju | Huang, Shengbing | Huang, Wei-Pang | Huber, Tobias B. | Huh, Won-Ki | Hung, Tai-Ho | Hupp, Ted R. | Hur, Gang Min | Hurley, James B. | Hussain, Sabah N.A. | Hussey, Patrick J. | Hwang, Jung Jin | Hwang, Seungmin | Ichihara, Atsuhiro | Ilkhanizadeh, Shirin | Inoki, Ken | Into, Takeshi | Iovane, Valentina | Iovanna, Juan L. | Ip, Nancy Y. | Isaka, Yoshitaka | Ishida, Hiroyuki | Isidoro, Ciro | Isobe, Ken-ichi | Iwasaki, Akiko | Izquierdo, Marta | Izumi, Yotaro | Jaakkola, Panu M. | Jäättelä, Marja | Jackson, George R. | Jackson, William T. | Janji, Bassam | Jendrach, Marina | Jeon, Ju-Hong | Jeung, Eui-Bae | Jiang, Hong | Jiang, Hongchi | Jiang, Jean X. | Jiang, Ming | Jiang, Qing | Jiang, Xuejun | Jiang, Xuejun | Jiménez, Alberto | Jin, Meiyan | Jin, Shengkan V. | Joe, Cheol O. | Johansen, Terje | Johnson, Daniel E. | Johnson, Gail V.W. | Jones, Nicola L. | Joseph, Bertrand | Joseph, Suresh K. | Joubert, Annie M. | Juhász, Gábor | Juillerat-Jeanneret, Lucienne | Jung, Chang Hwa | Jung, Yong-Keun | Kaarniranta, Kai | Kaasik, Allen | Kabuta, Tomohiro | Kadowaki, Motoni | Kågedal, Katarina | Kamada, Yoshiaki | Kaminskyy, Vitaliy O. | Kampinga, Harm H. | Kanamori, Hiromitsu | Kang, Chanhee | Kang, Khong Bee | Kang, Kwang Il | Kang, Rui | Kang, Yoon-A | Kanki, Tomotake | Kanneganti, Thirumala-Devi | Kanno, Haruo | Kanthasamy, Anumantha G. | Kanthasamy, Arthi | Karantza, Vassiliki | Kaushal, Gur P. | Kaushik, Susmita | Kawazoe, Yoshinori | Ke, Po-Yuan | Kehrl, John H. | Kelekar, Ameeta | Kerkhoff, Claus | Kessel, David H. | Khalil, Hany | Kiel, Jan A.K.W. | Kiger, Amy A. | Kihara, Akio | Kim, Deok Ryong | Kim, Do-Hyung | Kim, Dong-Hou | Kim, Eun-Kyoung | Kim, Hyung-Ryong | Kim, Jae-Sung | Kim, Jeong Hun | Kim, Jin Cheon | Kim, John K. | Kim, Peter K. | Kim, Seong Who | Kim, Yong-Sun | Kim, Yonghyun | Kimchi, Adi | Kimmelman, Alec C. | King, Jason S. | Kinsella, Timothy J. | Kirkin, Vladimir | Kirshenbaum, Lorrie A. | Kitamoto, Katsuhiko | Kitazato, Kaio | Klein, Ludger | Klimecki, Walter T. | Klucken, Jochen | Knecht, Erwin | Ko, Ben C.B. | Koch, Jan C. | Koga, Hiroshi | Koh, Jae-Young | Koh, Young Ho | Koike, Masato | Komatsu, Masaaki | Kominami, Eiki | Kong, Hee Jeong | Kong, Wei-Jia | Korolchuk, Viktor I. | Kotake, Yaichiro | Koukourakis, Michael I. | Flores, Juan B. Kouri | Kovács, Attila L. | Kraft, Claudine | Krainc, Dimitri | Krämer, Helmut | Kretz-Remy, Carole | Krichevsky, Anna M. | Kroemer, Guido | Krüger, Rejko | Krut, Oleg | Ktistakis, Nicholas T. | Kuan, Chia-Yi | Kucharczyk, Roza | Kumar, Ashok | Kumar, Raj | Kumar, Sharad | Kundu, Mondira | Kung, Hsing-Jien | Kurz, Tino | Kwon, Ho Jeong | La Spada, Albert R. | Lafont, Frank | Lamark, Trond | Landry, Jacques | Lane, Jon D. | Lapaquette, Pierre | Laporte, Jocelyn F. | László, Lajos | Lavandero, Sergio | Lavoie, Josée N. | Layfield, Robert | Lazo, Pedro A. | Le, Weidong | Le Cam, Laurent | Ledbetter, Daniel J. | Lee, Alvin J.X. | Lee, Byung-Wan | Lee, Gyun Min | Lee, Jongdae | lee, Ju-hyun | Lee, Michael | Lee, Myung-Shik | Lee, Sug Hyung | Leeuwenburgh, Christiaan | Legembre, Patrick | Legouis, Renaud | Lehmann, Michael | Lei, Huan-Yao | Lei, Qun-Ying | Leib, David A. | Leiro, José | Lemasters, John J. | Lemoine, Antoinette | Lesniak, Maciej S. | Lev, Dina | Levenson, Victor V. | Levine, Beth | Levy, Efrat | Li, Faqiang | Li, Jun-Lin | Li, Lian | Li, Sheng | Li, Weijie | Li, Xue-Jun | Li, Yan-Bo | Li, Yi-Ping | Liang, Chengyu | Liang, Qiangrong | Liao, Yung-Feng | Liberski, Pawel P. | Lieberman, Andrew | Lim, Hyunjung J. | Lim, Kah-Leong | Lim, Kyu | Lin, Chiou-Feng | Lin, Fu-Cheng | Lin, Jian | Lin, Jiandie D. | Lin, Kui | Lin, Wan-Wan | Lin, Weei-Chin | Lin, Yi-Ling | Linden, Rafael | Lingor, Paul | Lippincott-Schwartz, Jennifer | Lisanti, Michael P. | Liton, Paloma B. | Liu, Bo | Liu, Chun-Feng | Liu, Kaiyu | Liu, Leyuan | Liu, Qiong A. | Liu, Wei | Liu, Young-Chau | Liu, Yule | Lockshin, Richard A. | Lok, Chun-Nam | Lonial, Sagar | Loos, Benjamin | Lopez-Berestein, Gabriel | López-Otín, Carlos | Lossi, Laura | Lotze, Michael T. | Low, Peter | Lu, Binfeng | Lu, Bingwei | Lu, Bo | Lu, Zhen | Luciano, Fréderic | Lukacs, Nicholas W. | Lund, Anders H. | Lynch-Day, Melinda A. | Ma, Yong | Macian, Fernando | MacKeigan, Jeff P. | Macleod, Kay F. | Madeo, Frank | Maiuri, Luigi | Maiuri, Maria Chiara | Malagoli, Davide | Malicdan, May Christine V. | Malorni, Walter | Man, Na | Mandelkow, Eva-Maria | Manon, Stephen | Manov, Irena | Mao, Kai | Mao, Xiang | Mao, Zixu | Marambaud, Philippe | Marazziti, Daniela | Marcel, Yves L. | Marchbank, Katie | Marchetti, Piero | Marciniak, Stefan J. | Marcondes, Mateus | Mardi, Mohsen | Marfe, Gabriella | Mariño, Guillermo | Markaki, Maria | Marten, Mark R. | Martin, Seamus J. | Martinand-Mari, Camille | Martinet, Wim | Martinez-Vicente, Marta | Masini, Matilde | Matarrese, Paola | Matsuo, Saburo | Matteoni, Raffaele | Mayer, Andreas | Mazure, Nathalie M. | McConkey, David J. | McConnell, Melanie J. | McDermott, Catherine | McDonald, Christine | McInerney, Gerald M. | McKenna, Sharon L. | McLaughlin, BethAnn | McLean, Pamela J. | McMaster, Christopher R. | McQuibban, G. Angus | Meijer, Alfred J. | Meisler, Miriam H. | Meléndez, Alicia | Melia, Thomas J. | Melino, Gerry | Mena, Maria A. | Menendez, Javier A. | Menna-Barreto, Rubem F. S. | Menon, Manoj B. | Menzies, Fiona M. | Mercer, Carol A. | Merighi, Adalberto | Merry, Diane E. | Meschini, Stefania | Meyer, Christian G. | Meyer, Thomas F. | Miao, Chao-Yu | Miao, Jun-Ying | Michels, Paul A.M. | Michiels, Carine | Mijaljica, Dalibor | Milojkovic, Ana | Minucci, Saverio | Miracco, Clelia | Miranti, Cindy K. | Mitroulis, Ioannis | Miyazawa, Keisuke | Mizushima, Noboru | Mograbi, Baharia | Mohseni, Simin | Molero, Xavier | Mollereau, Bertrand | Mollinedo, Faustino | Momoi, Takashi | Monastyrska, Iryna | Monick, Martha M. | Monteiro, Mervyn J. | Moore, Michael N. | Mora, Rodrigo | Moreau, Kevin | Moreira, Paula I. | Moriyasu, Yuji | Moscat, Jorge | Mostowy, Serge | Mottram, Jeremy C. | Motyl, Tomasz | Moussa, Charbel E.-H. | Müller, Sylke | Muller, Sylviane | Münger, Karl | Münz, Christian | Murphy, Leon O. | Murphy, Maureen E. | Musarò, Antonio | Mysorekar, Indira | Nagata, Eiichiro | Nagata, Kazuhiro | Nahimana, Aimable | Nair, Usha | Nakagawa, Toshiyuki | Nakahira, Kiichi | Nakano, Hiroyasu | Nakatogawa, Hitoshi | Nanjundan, Meera | Naqvi, Naweed I. | Narendra, Derek P. | Narita, Masashi | Navarro, Miguel | Nawrocki, Steffan T. | Nazarko, Taras Y. | Nemchenko, Andriy | Netea, Mihai G. | Neufeld, Thomas P. | Ney, Paul A. | Nezis, Ioannis P. | Nguyen, Huu Phuc | Nie, Daotai | Nishino, Ichizo | Nislow, Corey | Nixon, Ralph A. | Noda, Takeshi | Noegel, Angelika A. | Nogalska, Anna | Noguchi, Satoru | Notterpek, Lucia | Novak, Ivana | Nozaki, Tomoyoshi | Nukina, Nobuyuki | Nürnberger, Thorsten | Nyfeler, Beat | Obara, Keisuke | Oberley, Terry D. | Oddo, Salvatore | Ogawa, Michinaga | Ohashi, Toya | Okamoto, Koji | Oleinick, Nancy L. | Oliver, F. Javier | Olsen, Laura J. | Olsson, Stefan | Opota, Onya | Osborne, Timothy F. | Ostrander, Gary K. | Otsu, Kinya | Ou, Jing-hsiung James | Ouimet, Mireille | Overholtzer, Michael | Ozpolat, Bulent | Paganetti, Paolo | Pagnini, Ugo | Pallet, Nicolas | Palmer, Glen E. | Palumbo, Camilla | Pan, Tianhong | Panaretakis, Theocharis | Pandey, Udai Bhan | Papackova, Zuzana | Papassideri, Issidora | Paris, Irmgard | Park, Junsoo | Park, Ohkmae K. | Parys, Jan B. | Parzych, Katherine R. | Patschan, Susann | Patterson, Cam | Pattingre, Sophie | Pawelek, John M. | Peng, Jianxin | Perlmutter, David H. | Perrotta, Ida | Perry, George | Pervaiz, Shazib | Peter, Matthias | Peters, Godefridus J. | Petersen, Morten | Petrovski, Goran | Phang, James M. | Piacentini, Mauro | Pierre, Philippe | Pierrefite-Carle, Valérie | Pierron, Gérard | Pinkas-Kramarski, Ronit | Piras, Antonio | Piri, Natik | Platanias, Leonidas C. | Pöggeler, Stefanie | Poirot, Marc | Poletti, Angelo | Poüs, Christian | Pozuelo-Rubio, Mercedes | Prætorius-Ibba, Mette | Prasad, Anil | Prescott, Mark | Priault, Muriel | Produit-Zengaffinen, Nathalie | Progulske-Fox, Ann | Proikas-Cezanne, Tassula | Przedborski, Serge | Przyklenk, Karin | Puertollano, Rosa | Puyal, Julien | Qian, Shu-Bing | Qin, Liang | Qin, Zheng-Hong | Quaggin, Susan E. | Raben, Nina | Rabinowich, Hannah | Rabkin, Simon W. | Rahman, Irfan | Rami, Abdelhaq | Ramm, Georg | Randall, Glenn | Randow, Felix | Rao, V. Ashutosh | Rathmell, Jeffrey C. | Ravikumar, Brinda | Ray, Swapan K. | Reed, Bruce H. | Reed, John C. | Reggiori, Fulvio | Régnier-Vigouroux, Anne | Reichert, Andreas S. | Reiners, John J. | Reiter, Russel J. | Ren, Jun | Revuelta, José L. | Rhodes, Christopher J. | Ritis, Konstantinos | Rizzo, Elizete | Robbins, Jeffrey | Roberge, Michel | Roca, Hernan | Roccheri, Maria C. | Rocchi, Stephane | Rodemann, H. Peter | Rodríguez de Córdoba, Santiago | Rohrer, Bärbel | Roninson, Igor B. | Rosen, Kirill | Rost-Roszkowska, Magdalena M. | Rouis, Mustapha | Rouschop, Kasper M.A. | Rovetta, Francesca | Rubin, Brian P. | Rubinsztein, David C. | Ruckdeschel, Klaus | Rucker, Edmund B. | Rudich, Assaf | Rudolf, Emil | Ruiz-Opazo, Nelson | Russo, Rossella | Rusten, Tor Erik | Ryan, Kevin M. | Ryter, Stefan W. | Sabatini, David M. | Sadoshima, Junichi | Saha, Tapas | Saitoh, Tatsuya | Sakagami, Hiroshi | Sakai, Yasuyoshi | Salekdeh, Ghasem Hoseini | Salomoni, Paolo | Salvaterra, Paul M. | Salvesen, Guy | Salvioli, Rosa | Sanchez, Anthony M.J. | Sánchez-Alcázar, José A. | Sánchez-Prieto, Ricardo | Sandri, Marco | Sankar, Uma | Sansanwal, Poonam | Santambrogio, Laura | Saran, Shweta | Sarkar, Sovan | Sarwal, Minnie | Sasakawa, Chihiro | Sasnauskiene, Ausra | Sass, Miklós | Sato, Ken | Sato, Miyuki | Schapira, Anthony H.V. | Scharl, Michael | Schätzl, Hermann M. | Scheper, Wiep | Schiaffino, Stefano | Schneider, Claudio | Schneider, Marion E. | Schneider-Stock, Regine | Schoenlein, Patricia V. | Schorderet, Daniel F. | Schüller, Christoph | Schwartz, Gary K. | Scorrano, Luca | Sealy, Linda | Seglen, Per O. | Segura-Aguilar, Juan | Seiliez, Iban | Seleverstov, Oleksandr | Sell, Christian | Seo, Jong Bok | Separovic, Duska | Setaluri, Vijayasaradhi | Setoguchi, Takao | Settembre, Carmine | Shacka, John J. | Shanmugam, Mala | Shapiro, Irving M. | Shaulian, Eitan | Shaw, Reuben J. | Shelhamer, James H. | Shen, Han-Ming | Shen, Wei-Chiang
Autophagy  2012;8(4):445-544.
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
doi:10.4161/auto.19496
PMCID: PMC3404883  PMID: 22966490
LC3; autolysosome; autophagosome; flux; lysosome; phagophore; stress; vacuole
5.  Increased Neointimal Thickening in Dystrophin-Deficient mdx Mice 
PLoS ONE  2012;7(1):e29904.
Background
The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation.
Methodology/Principal Findings
We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice.
Conclusions/Significance
These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.
doi:10.1371/journal.pone.0029904
PMCID: PMC3251593  PMID: 22238670
6.  Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies 
Skeletal Muscle  2011;1:9.
Laminin-211 is a cell-adhesion molecule that is strongly expressed in the basement membrane of skeletal muscle. By binding to the cell surface receptors dystroglycan and integrin α7β1, laminin-211 is believed to protect the muscle fiber from damage under the constant stress of contractions, and to influence signal transmission events. The importance of laminin-211 in skeletal muscle is evident from merosin-deficient congenital muscular dystrophy type 1A (MDC1A), in which absence of the α2 chain of laminin-211 leads to skeletal muscle dysfunction. MDC1A is the commonest form of congenital muscular dystrophy in the European population. Severe hypotonia, progressive muscle weakness and wasting, joint contractures and consequent impeded motion characterize this incurable disorder, which causes great difficulty in daily life and often leads to premature death. Mice with laminin α2 chain deficiency have analogous phenotypes, and are reliable models for studies of disease mechanisms and potential therapeutic approaches. In this review, we introduce laminin-211 and describe its structure, expression pattern in developing and adult muscle and its receptor interactions. We will also discuss the molecular pathogenesis of MDC1A and advances toward the development of treatment.
doi:10.1186/2044-5040-1-9
PMCID: PMC3156650  PMID: 21798088
7.  Distinct Roles for Laminin Globular Domains in Laminin α1 Chain Mediated Rescue of Murine Laminin α2 Chain Deficiency 
PLoS ONE  2010;5(7):e11549.
Background
Laminin α2 chain mutations cause congenital muscular dystrophy with dysmyelination neuropathy (MDC1A). Previously, we demonstrated that laminin α1 chain ameliorates the disease in mice. Dystroglycan and integrins are major laminin receptors. Unlike laminin α2 chain, α1 chain binds the receptors by separate domains; laminin globular (LG) domains 4 and LG1-3, respectively. Thus, the laminin α1 chain is an excellent tool to distinguish between the roles of dystroglycan and integrins in the neuromuscular system.
Methodology/Principal Findings
Here, we provide insights into the functions of laminin α1LG domains and the division of their roles in MDC1A pathogenesis and rescue. Overexpression of laminin α1 chain that lacks the dystroglycan binding LG4-5 domains in α2 chain deficient mice resulted in prolonged lifespan and improved health. Importantly, diaphragm and heart muscles were corrected, whereas limb muscles were dystrophic, indicating that different muscles have different requirements for LG4-5 domains. Furthermore, the regenerative capacity of the skeletal muscle did not depend on laminin α1LG4-5. However, this domain was crucial for preventing apoptosis in limb muscles, essential for myelination in peripheral nerve and important for basement membrane assembly.
Conclusions/Significance
These results show that laminin α1LG domains and consequently their receptors have disparate functions in the neuromuscular system. Understanding these interactions could contribute to design and optimization of future medical treatment for MDC1A patients.
doi:10.1371/journal.pone.0011549
PMCID: PMC2906511  PMID: 20657839
8.  Brain and Eye Malformations Resembling Walker–Warburg Syndrome Are Recapitulated in Mice by Dystroglycan Deletion in the Epiblast 
Walker–Warburg syndrome (WWS) is a severe congenital disease that is characterized by brain and eye malformations and lethality during the first year of life. Genetic mutations have been identified in a subset of WWS patients, but a majority of clinical cases have unknown etiologies. POMT1 and POMT2, two of the causative genes, form an active enzyme complex in the posttranslational biosynthetic pathway of dystroglycan. Deletion of either Pomt1 or the dystroglycan gene causes early embryonic lethality in mice. Here we report that mice with epiblast-specific loss of dystroglycan develop brain and eye defects that broadly resemble the clinical spectrum of the human disease, including aberrant neuron migration, hydrocephalus, and malformations of the anterior and posterior chambers of the eye. Breaches of basement membranes coincide with the pathology, revealing an important function for dystroglycan in the morphogenesis of the brain and eye. These findings demonstrate the central role of dystroglycan in WWS and suggest that novel defects in posttranslational processing or mutations of the dystroglycan gene itself may underlie cases in which no causative mutation has been found.
doi:10.1523/JNEUROSCI.2457-08.2008
PMCID: PMC2714190  PMID: 18923033
Walker–Warburg syndrome; congenital muscular dystrophy; lissencephaly; hydrocephalus; microphthalmia; dystroglycan
9.  Compositional Differences between Infant and Adult Human Corneal Basement Membranes 
Purpose
Adult human corneal epithelial basement membrane (EBM) and Descemet's membrane (DM) components exhibit heterogeneous distribution. The purpose of the study was to identify changes of these components during postnatal corneal development.
Methods
Thirty healthy adult corneas and 10 corneas from 12-day- to 3-year-old children were studied by immunofluorescence with antibodies against BM components.
Results
Type IV collagen composition of infant corneal central EBM over Bowman's layer changed from α1-α2 to α3-α4 chains after 3 years of life; in the adult, α1-α2 chains were retained only in the limbal BM. Laminin α2 and β2 chains were present in the adult limbal BM where epithelial stem cells are located. By 3 years of age, β2 chain appeared in the limbal BM. In all corneas, limbal BM contained laminin γ3 chain. In the infant DM, type IV collagen α1-α6 chains, perlecan, nidogen-1, nidogen-2, and netrin-4 were found on both faces, but they remained only on the endothelial face of the adult DM. The stromal face of the infant but not the adult DM was positive for tenascin-C, fibrillin-1, SPARC, and laminin-332. Type VIII collagen shifted from the endothelial face of infant DM to its stromal face in the adult. Matrilin-4 largely disappeared after the age of 3 years.
Conclusions
The distribution of laminin γ3 chain, nidogen-2, netrin-4, matrilin-2, and matrilin-4 is described in the cornea for the first time. The observed differences between adult and infant corneal BMs may relate to changes in their mechanical strength, corneal cell adhesion and differentiation in the process of postnatal corneal maturation.
doi:10.1167/iovs.07-0654
PMCID: PMC2151758  PMID: 17962449
10.  Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis 
The Journal of Experimental Medicine  2006;203(4):1007-1019.
The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated parenchymal BM, all of which contribute to establishment of the blood–brain barrier (BBB). As a consequence of this unique structure, leukocyte penetration of cerebral vessels is a multistep event. In mouse experimental autoimmune encephalomyelitis (EAE), a widely used central nervous system inflammatory model, leukocytes first penetrate the endothelial cell monolayer and underlying BM using integrin β1-mediated processes, but mechanisms used to penetrate the second barrier defined by the parenchymal BM and glia limitans remain uninvestigated. We show here that macrophage-derived gelatinase (matrix metalloproteinase [MMP]-2 and MMP-9) activity is crucial for leukocyte penetration of the parenchymal BM. Dystroglycan, a transmembrane receptor that anchors astrocyte endfeet to the parenchymal BM via high affinity interactions with laminins 1 and 2, perlecan and agrin, is identified as a specific substrate of MMP-2 and MMP-9. Ablation of both MMP-2 and MMP-9 in double knockout mice confers resistance to EAE by inhibiting dystroglycan cleavage and preventing leukocyte infiltration. This is the first description of selective in situ proteolytic damage of a BBB-specific molecule at sites of leukocyte infiltration.
doi:10.1084/jem.20051342
PMCID: PMC2118280  PMID: 16585265
11.  Opposing Roles of Integrin α6Aβ1 and Dystroglycan in Laminin-mediated Extracellular Signal-regulated Kinase Activation 
Molecular Biology of the Cell  2003;14(5):2088-2103.
Laminin–integrin interactions can in some settings activate the extracellular signal-regulated kinases (ERKs) but the control mechanisms are poorly understood. Herein, we studied ERK activation in response to two laminins isoforms (-1 and -10/11) in two epithelial cell lines. Both cell lines expressed β1-containing integrins and dystroglycan but lacked integrin α6β4. Antibody perturbation assays showed that both cell lines bound to laminin-10/11 via the α3β1and α6β1 integrins. Although laminin-10/11 was a stronger adhesion complex than laminin-1 for both cell lines, both laminins activated ERK in only one of the two cell lines. The ERK activation was mediated by integrin α6β1 and not by α3β1 or dystroglycan. Instead, we found that dystroglycan-binding domains of both laminin-1 and -10/11 suppressed integrin α6β1-mediated ERK activation. Moreover, the responding cell line expressed the two integrin α6 splice variants, α6A and α6B, whereas the nonresponding cell line expressed only α6B. Furthermore, ERK activation was seen in cells transfected with the integrin α6A subunit, but not in α6B-transfected cells. We conclude that laminin-1 and -10/11 share the ability to induce ERK activation, that this is regulated by integrin α6Aβ1, and suggest a novel role for dystroglycan-binding laminin domains as suppressors of this activation.
doi:10.1091/mbc.E03-01-0852
PMCID: PMC165099  PMID: 12802077
12.  Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex 
Cardiomyopathy is a multifactorial disease, and the dystrophin-glycoprotein complex has been implicated in the pathogenesis of both hereditary and acquired forms of the disease. Using mouse models of cardiomyopathy made by ablating genes for components of the sarcoglycan complex, we show that long-term treatment with verapamil, a calcium channel blocker with vasodilator properties, can alleviate the severe cardiomyopathic phenotype, restoring normal serum levels for cardiac troponin I and normal cardiac muscle morphology. Interruption of verapamil treatment leads again to vascular dysfunction and acute myocardial necrosis, indicating that predilection for cardiomyopathy is a continuing process. In contrast, verapamil did not prevent cardiac muscle pathology in dystrophin-deficient mdx mice, which neither show a disruption of the sarcoglycan complex in vascular smooth muscle nor vascular dysfunction. Hence, our data strongly suggest that pharmacological intervention with verapamil merits investigation as a potential therapeutic option not only for patients with sarcoglycan mutations, but also for patients with idiopathic cardiomyopathy associated with myocardial ischemia not related to atherosclerotic coronary artery disease.
PMCID: PMC199179  PMID: 11160141
13.  Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice  
The Journal of Cell Biology  1998;142(6):1461-1471.
Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the α-sarcoglycan gene. To determine how α-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed α-sarcoglycan– deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy, showed ongoing muscle necrosis with age, a hallmark of the human disease. Sgca-null mice also revealed loss of sarcolemmal integrity, elevated serum levels of muscle enzymes, increased muscle masses, and changes in the generation of absolute force. Molecular analysis of Sgca-null mice demonstrated that the absence of α-sarcoglycan resulted in the complete loss of the sarcoglycan complex, sarcospan, and a disruption of α-dystroglycan association with membranes. In contrast, no change in the expression of ε-sarcoglycan (α-sarcoglycan homologue) was observed. Recombinant α-sarcoglycan adenovirus injection into Sgca-deficient muscles restored the sarcoglycan complex and sarcospan to the membrane. We propose that the sarcoglycan–sarcospan complex is requisite for stable association of α-dystroglycan with the sarcolemma. The Sgca-deficient mice will be a valuable model for elucidating the pathogenesis of sarcoglycan deficient limb-girdle muscular dystrophies and for the development of therapeutic strategies for this disease.
PMCID: PMC2141773  PMID: 9744877
gene targeting; muscular dystrophy; sarcoglycan; dystroglycan; sarcospan

Results 1-13 (13)