PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte 
Respiratory Research  2011;12(1):10.
Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil.
doi:10.1186/1465-9921-12-10
PMCID: PMC3030543  PMID: 21235798
2.  Uncoordinated production of Laminin-5 chains in airways epithelium of allergic asthmatics 
Respiratory Research  2005;6(1):110.
Background
Laminins are a group of proteins largely responsible for the anchorage of cells to basement membranes. We hypothesized that altered Laminin chain production in the bronchial mucosa might explain the phenomenon of epithelial cell shedding in asthma. The aim was to characterize the presence of Laminin chains in the SEBM and epithelium in allergic and non-allergic asthmatics.
Patients and methods
Biopsies were taken from the bronchi of 11 patients with allergic and 9 patients with non-allergic asthma and from 7 controls and stained with antibodies against the Laminin (ln) chains alpha1-alpha5, beta1-beta2 and gamma1-gamma2.
Results
Lns-2,-5 and -10 were the main Laminins of SEBM. The layer of ln-10 was thicker in the two asthmatic groups while an increased thickness of lns-2 and -5 was only seen in allergic asthmatics. The ln gamma2-chain, which is only found in ln 5, was exclusively expressed in epithelial cells in association with epithelial injury and in the columnar epithelium of allergic asthmatics.
Conclusion
The uncoordinated production of chains of ln-5 in allergic asthma could have a bearing on the poor epithelial cell anchorage in these patients.
doi:10.1186/1465-9921-6-110
PMCID: PMC1261536  PMID: 16179086

Results 1-2 (2)