PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Partial Sleep Restriction Activates Immune Response-Related Gene Expression Pathways: Experimental and Epidemiological Studies in Humans 
PLoS ONE  2013;8(10):e77184.
Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.
doi:10.1371/journal.pone.0077184
PMCID: PMC3806729  PMID: 24194869
2.  Interaction between Retinoid Acid Receptor-Related Orphan Receptor Alpha (RORA) and Neuropeptide S Receptor 1 (NPSR1) in Asthma 
PLoS ONE  2013;8(4):e60111.
Retinoid acid receptor-related Orphan Receptor Alpha (RORA) was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs) in the vicinity of the asthma-associated SNP (rs11071559) and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1), has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children) and the European cross-sectional PARSIFAL study (1120 children). Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C) was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36–2.93, p = 0.0003 in BAMSE; and 1.61, 1.18–2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively), and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.
doi:10.1371/journal.pone.0060111
PMCID: PMC3615072  PMID: 23565190
3.  CD8+ T Cell Migration to the Skin Requires CD4+ Help in a Murine Model of Contact Hypersensitivity 
PLoS ONE  2012;7(8):e41038.
The relative roles of CD4+ and CD8+ T cells in contact hypersensitivity responses have not been fully solved, and remain an important question. Using an adoptive transfer model, we investigated the role of the respective T cell subset. Magnetic bead separated CD4+ and CD8+ T cells from oxazolone sensitized C57BL/6 mice were transferred into RAG−/− mice, followed by hapten challenge and analysis of inflammatory parameters at 24 hours post exposure. The CD4+ T cell recipient mice developed partial contact hypersensitivity responses to oxazolone. CD8+ T cells caused significant amplification of the response in recipients of both CD4+ and CD8+ T cells including ear swelling, type 1 inflammatory mediators, and cell killing. Unexpectedly, CD8+ T cells were not sufficient to mediate contact hypersensitivity, although abundantly present in the lymph nodes in the CD8+ T cell reconstituted mice. There were no signs of inflammation at the site of hapten exposure, indicating impaired recruitment of CD8+ T cells in the absence of CD4+ T cells. These data show that CD4+ T cells mediate contact hypersensitivity to oxazolone, but CD8+ T cells contribute with the most potent effector mechanisms. Moreover, our results suggest that CD4+ T cell function is required for the mobilization of CD8+ effector T cells to the site of hapten exposure. The results shed new light on the relative importance of CD4+ and CD8+ T cells during the effector phase of contact hypersensitivity.
doi:10.1371/journal.pone.0041038
PMCID: PMC3423415  PMID: 22916101
4.  The asthma candidate gene NPSR1 mediates isoform specific downstream signalling 
Background
Neuropeptide S Receptor 1 (NPSR1, GPRA, GPR154) was first identified as an asthma candidate gene through positional cloning and has since been replicated as an asthma and allergy susceptibility gene in several independent association studies. In humans, NPSR1 encodes two G protein-coupled receptor variants, NPSR1-A and NPSR1-B, with unique intracellular C-termini. Both isoforms show distinct expression pattern in asthmatic airways. Although NPSR1-A has been extensively studied, functional differences and properties of NPSR1-B have not yet been clearly examined. Our objective was to investigate downstream signalling properties of NPSR1-B and functional differences between NPSR1-A and NPSR1-B.
Methods
HEK-293 cells transiently overexpressing NPSR1-A or NPSR1-B were stimulated with the ligand neuropeptide S (NPS) and downstream signalling effects were monitored by genome-scale affymetrix expression-arrays. The results were verified by NPS concentration-response and time series analysis using qRT-PCR, cAMP and Ca2+ assays, and cAMP/PKA, MAPK/JNK and MAPK/ERK pathway specific reporter assays.
Results
NPSR1-B signalled through the same pathways and regulated the same genes as NPSR1-A, but NPSR1-B yielded lower induction on effector genes than NPSR1-A, with one notable exception, CD69, a marker of regulatory T cells.
Conclusions
We conclude that NPSR1-B is regulating essentially identical set of genes as NPSR1-A, with few, but possibly important exceptions, and that NPSR1-A induces stronger signalling effects than NPSR1-B. Our findings suggest an isoform-specific link to pathogenetic processes in asthma and allergy.
doi:10.1186/1471-2466-11-39
PMCID: PMC3142248  PMID: 21707994
5.  Attenuated expression of tenascin-c in ovalbumin-challenged STAT4-/- mice 
Respiratory Research  2011;12(1):2.
Background
Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.
Methods
Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.
Results
OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.
Conclusions
Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.
doi:10.1186/1465-9921-12-2
PMCID: PMC3024219  PMID: 21205293
6.  Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model 
Background
Nanotechnology and engineered nanomaterials (ENM) are here to stay. Recent evidence suggests that exposure to environmental particulate matter exacerbates symptoms of asthma. In the present study we investigated the modulatory effects of titanium dioxide particle exposure in an experimental allergic asthma.
Methods
Nonallergic (healthy) and ovalbumin-sensitized (asthmatic) mice were exposed via inhalation to two different sizes of titanium dioxide particles, nanosized (nTiO2) and fine (fTiO2), for 2 hours a day, three days a week, for four weeks at a concentration of 10 mg/m3. Different endpoints were analysed to evaluate the immunological status of the mice.
Results
Healthy mice elicited pulmonary neutrophilia accompanied by significantly increased chemokine CXCL5 expression when exposed to nTiO2. Surprisingly, allergic pulmonary inflammation was dramatically suppressed in asthmatic mice which were exposed to nTiO2 or fTiO2 particles - i.e. the levels of leucocytes, cytokines, chemokines and antibodies characteristic to allergic asthma were substantially decreased.
Conclusions
Our results suggest that repeated airway exposure to TiO2 particles modulates the airway inflammation depending on the immunological status of the exposed mice.
doi:10.1186/1743-8977-7-35
PMCID: PMC3003234  PMID: 21108815
7.  Sleep Restriction Increases the Risk of Developing Cardiovascular Diseases by Augmenting Proinflammatory Responses through IL-17 and CRP 
PLoS ONE  2009;4(2):e4589.
Background
Sleep restriction, leading to deprivation of sleep, is common in modern 24-h societies and is associated with the development of health problems including cardiovascular diseases. Our objective was to investigate the immunological effects of prolonged sleep restriction and subsequent recovery sleep, by simulating a working week and following recovery weekend in a laboratory environment.
Methods and Findings
After 2 baseline nights of 8 hours time in bed (TIB), 13 healthy young men had only 4 hours TIB per night for 5 nights, followed by 2 recovery nights with 8 hours TIB. 6 control subjects had 8 hours TIB per night throughout the experiment. Heart rate, blood pressure, salivary cortisol and serum C-reactive protein (CRP) were measured after the baseline (BL), sleep restriction (SR) and recovery (REC) period. Peripheral blood mononuclear cells (PBMC) were collected at these time points, counted and stimulated with PHA. Cell proliferation was analyzed by thymidine incorporation and cytokine production by ELISA and RT-PCR. CRP was increased after SR (145% of BL; p<0.05), and continued to increase after REC (231% of BL; p<0.05). Heart rate was increased after REC (108% of BL; p<0.05). The amount of circulating NK-cells decreased (65% of BL; p<0.005) and the amount of B-cells increased (121% of BL; p<0.005) after SR, but these cell numbers recovered almost completely during REC. Proliferation of stimulated PBMC increased after SR (233% of BL; p<0.05), accompanied by increased production of IL-1β (137% of BL; p<0.05), IL-6 (163% of BL; p<0.05) and IL-17 (138% of BL; p<0.05) at mRNA level. After REC, IL-17 was still increased at the protein level (119% of BL; p<0.05).
Conclusions
5 nights of sleep restriction increased lymphocyte activation and the production of proinflammatory cytokines including IL-1β IL-6 and IL-17; they remained elevated after 2 nights of recovery sleep, accompanied by increased heart rate and serum CRP, 2 important risk factors for cardiovascular diseases. Therefore, long-term sleep restriction may lead to persistent changes in the immune system and the increased production of IL-17 together with CRP may increase the risk of developing cardiovascular diseases.
doi:10.1371/journal.pone.0004589
PMCID: PMC2643002  PMID: 19240794
8.  MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis? 
PLoS ONE  2007;2(7):e610.
MicroRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in health and disease. Psoriasis is the most prevalent chronic inflammatory skin disease in adults, with a substantial negative impact on the patients' quality of life. Here we show for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema. Among the psoriasis-specific microRNAs, we identified leukocyte-derived microRNAs and one keratinocyte-derived microRNA, miR-203. In a panel of 21 different human organs and tissues, miR-203 showed a highly skin-specific expression profile. Among the cellular constituents of the skin, it was exclusively expressed by keratinocytes. The up-regulation of miR-203 in psoriatic plaques was concurrent with the down-regulation of an evolutionary conserved target of miR-203, suppressor of cytokine signaling 3 (SOCS-3), which is involved in inflammatory responses and keratinocyte functions. Our results suggest that microRNA deregulation is involved in the pathogenesis of psoriasis and contributes to the dysfunction of the cross talk between resident and infiltrating cells. Taken together, a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases.
doi:10.1371/journal.pone.0000610
PMCID: PMC1905940  PMID: 17622355
9.  Smad3 -signalling and Th2 cytokines in normal mouse airways and in a mouse model of asthma 
This study investigates the role of Smad3 signalling for the T-helper2 (Th2) cytokine homeostasis in normal lungs and in a mouse model of asthma.
We used mice deficient for Smad3, a central part of the major signal transduction pathway for TGF-β and other related cytokines, and a mouse model for allergic asthma with ovalbumin (OVA) as the antigen.
Compared to wild type mice, naive (unmanipulated) Smad3-/- mice exhibited significantly increased levels of proinflammatory cytokines and IL-4 as well as the Th2 associated transcription factor GATA-3 in the lung tissue and bronchoalveolar lavage (BAL). In the asthma model, mucin secretion and airway hyperresponsiveness (AHR) after allergen exposure was significantly increased in the Smad3-/- mice as compared to wild type (WT) mice. IL-4 levels in Smad3-/- were similar to those encountered in WT mice but IL-13 levels were decreased in the airways of OVA sensitized Smad3-/- mice compared to corresponding WT mice.
The results indicate that a lack of Smad3 dependent signalling in the normal state will lead to an increase in the GATA-3 levels and as a result of this the levels of IL-4 increase. However, the lack of Smad3 also seems to inhibit expression of some cytokines, especially IL-13. Our results also indicate that in the inflammatory state TGF-β or related cytokines functions to counterbalance the effects of IL-4 rather than to critically regulate its expression.
PMCID: PMC2096738  PMID: 18071588
Smad3; TGF-β; Asthma.
10.  IL-10 is critical for Th2 responses in a murine model of allergic dermatitis 
Journal of Clinical Investigation  2003;112(7):1058-1066.
We found that mechanical injury to mouse skin, which can be caused by tape stripping, results in rapid induction of IL-10 mRNA. IL-10–/– mice were used to examine the role of IL-10 in a mouse model of allergic dermatitis induced by epicutaneous (EC) sensitization with OVA on tape-stripped skin. Skin infiltration by eosinophils and expression of eotaxin, IL-4, and IL-5 mRNA in OVA-sensitized skin sites were severely diminished in IL-10–/– mice. Following in vitro stimulation with OVA, splenocytes from EC-sensitized IL-10–/– mice secreted significantly less IL-4, but significantly more IFN-γ, than splenocytes from WT controls. A similar skewing in cytokine secretion profile was observed in the splenocytes of IL-10–/– mice immunized intraperitoneally with OVA. IL-10–/– APCs skewed the in vitro response of OVA T cell receptor (TCR) transgenic T cells towards Th1. Examination of the Th response of WT and IL-10–/– mice immunized with OVA-pulsed WT or IL-10–/– DCs revealed that both DCs and T cells participate in IL-10 skewing of the Th2 response in vivo. These results suggest that IL-10 plays an important role in the Th2 response to antigen and in the development of skin eosinophilia in a murine model of allergic dermatitis.
doi:10.1172/JCI200318246
PMCID: PMC198527  PMID: 14523043
11.  CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation 
The CC chemokine receptor 3 (CCR3) is expressed by eosinophils, mast cells, and Th2 cells. We used CCR3–/– mice to assess the role of CCR3 in a murine model of allergic skin inflammation induced by repeated epicutaneous sensitization with ovalbumin (OVA), and characterized by eosinophil skin infiltration, local expression of Th2 cytokines, and airway hyperresponsiveness (AHR) to inhaled antigen. Eosinophils and the eosinophil product major basic protein were absent from the skin of sham and OVA-sensitized CCR3–/– mice. Mast cell numbers and expression of IL-4 mRNA were normal in skin of CCR3–/– mice, suggesting that CCR3 is not important for infiltration of the skin by mast cells and Th2 cells. CCR3–/– mice produced normal levels of OVA-specific IgE, and their splenocytes secreted normal amounts of IL-4 and IL-5 following in vitro stimulation with OVA, indicating effective generation of systemic Th2 helper responses. Recruitment of eosinophils to lung parenchyma and bronchoalveolar lavage (BAL) fluid was severely impaired in CCR3–/– mice, which failed to develop AHR to methacholine following antigen inhalation. These results suggest that CCR3 plays an essential role in eosinophil recruitment to the skin and the lung and in the development of AHR.
doi:10.1172/JCI14097
PMCID: PMC150891  PMID: 11877470

Results 1-11 (11)