Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Prediction of Diabetes Based on Baseline Metabolic Characteristics in Individuals at High Risk 
Diabetes Care  2013;36(11):3607-3612.
Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance.
We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years.
In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, ∆G0–120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln ∆I0–120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [∆I0–120/∆G0–120]) during the OGTT was associated with decreased risk of diabetes. Higher β-cell function (insulin secretion/insulin resistance or disposition index; ln [∆I0–120/∆G0–120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes.
In a stepwise multiple-variable analysis, only HbA1c and β-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001).
PMCID: PMC3816921  PMID: 24062330
2.  Prevention of Diabetes With Pioglitazone in ACT NOW 
Diabetes  2013;62(11):3920-3926.
We examined the metabolic characteristics that attend the development of type 2 diabetes (T2DM) in 441 impaired glucose tolerance (IGT) subjects who participated in the ACT NOW Study and had complete end-of-study metabolic measurements. Subjects were randomized to receive pioglitazone (PGZ; 45 mg/day) or placebo and were observed for a median of 2.4 years. Indices of insulin sensitivity (Matsuda index [MI]), insulin secretion (IS)/insulin resistance (IR; ΔI0–120/ΔG0–120, ΔIS rate [ISR]0–120/ΔG0–120), and β-cell function (ΔI/ΔG × MI and ΔISR/ΔG × MI) were calculated from plasma glucose, insulin, and C-peptide concentrations during oral glucose tolerance tests at baseline and study end. Diabetes developed in 45 placebo-treated vs. 15 PGZ-treated subjects (odds ratio [OR] 0.28 [95% CI 0.15–0.49]; P < 0.0001); 48% of PGZ-treated subjects reverted to normal glucose tolerance (NGT) versus 28% of placebo-treated subjects (P < 0.005). Higher final glucose tolerance status (NGT > IGT > T2DM) was associated with improvements in insulin sensitivity (OR 0.61 [95% CI 0.54–0.80]), IS (OR 0.61 [95% CI 0.50–0.75]), and β-cell function (ln IS/IR index and ln ISR/IR index) (OR 0.26 [95% CI 0.19–0.37]; all P < 0.0001). Of the factors measured, improved β-cell function was most closely associated with final glucose tolerance status.
PMCID: PMC3806596  PMID: 23863810
3.  Effects of High-Protein Versus High-Carbohydrate Diets on Markers of β-Cell Function, Oxidative Stress, Lipid Peroxidation, Proinflammatory Cytokines, and Adipokines in Obese, Premenopausal Women Without Diabetes 
Diabetes Care  2013;36(7):1919-1925.
To study the effects of high-protein versus high-carbohydrate diets on various metabolic end points (glucoregulation, oxidative stress [dichlorofluorescein], lipid peroxidation [malondialdehyde], proinflammatory cytokines [tumor necrosis factor-α and interleukin-6], adipokines, and resting energy expenditure [REE]) with high protein–low carbohydrate (HP) and high carbohydrate–low protein (HC) diets at baseline and after 6 months of dietary intervention.
We recruited obese, premenopausal women aged 20–50 years with no diabetes or prediabetes who were randomized to HC (55% carbohydrates, 30% fat, and 15% protein) or HP (40% carbohydrates, 30% fat, and 30% protein) diets for 6 months. The diets were provided in prepackaged food, which provided 500 kcal restrictions per day. The above metabolic end points were measured with HP and HC diet at baseline and after 6 months of dietary intervention.
After 6 months of the HP versus HC diet (12 in each group), the following changes were significantly different by Wilcoxon rank sum test for the following parameters: dichlorofluorescein (−0.8 vs. −0.3 µmol/L, P < 0.0001), malondialdehyde (−0.4 vs. −0.2 μmol/L, P = 0.0004), C-reactive protein (−2.1 vs. −0.8 mg/L, P = 0.0003), E-selectin (−8.6 vs. −3.7 ng/mL, P = 0.0007), adiponectin (1,284 vs. 504 ng/mL, P = 0.0011), tumor necrosis factor-α (−1.8 vs. −0.9 pg/mL, P < 0.0001), IL-6 (−1.3 vs. −0.4 pg/mL, P < 0.0001), free fatty acid (−0.12 vs. 0.16 mmol/L, P = 0.0002), REE (259 vs. 26 kcal, P < 0.0001), insulin sensitivity (4 vs. 0.9, P < 0.0001), and β-cell function (7.4 vs. 2.1, P < 0.0001).
To our knowledge, this is the first report on the significant advantages of a 6-month hypocaloric HP diet versus hypocaloric HC diet on markers of β-cell function, oxidative stress, lipid peroxidation, proinflammatory cytokines, and adipokines in normal, obese females without diabetes.
PMCID: PMC3687312  PMID: 23404297
4.  Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors 
To determine whether changes in standard and novel risk factors during the ACT NOW trial explained the slower rate of CIMT progression with pioglitazone treatment in persons with prediabetes.
Methods and Results
CIMT was measured in 382 participants at the beginning and up to three additional times during follow-up of the ACT NOW trial. During an average follow-up of 2.3 years, the mean unadjusted annual rate of CIMT progression was significantly (P=0.01) lower with pioglitazone treatment (4.76 × 10−3 mm/year, 95% CI, 2.39 × 10−3 – 7.14 × 10−3 mm/year) compared with placebo (9.69 × 10−3 mm/year, 95% CI, 7.24 × 10−3 – 12.15 × 10−3 mm/year). High-density lipoprotein cholesterol, fasting and 2-hour glucose, HbA1c, fasting insulin, Matsuda insulin sensitivity index, adiponectin and plasminogen activator inhibitor-1 levels improved significantly with pioglitazone treatment compared with placebo (P < 0.001). However, the effect of pioglitazone on CIMT progression was not attenuated by multiple methods of adjustment for traditional, metabolic and inflammatory risk factors and concomitant medications, and was independent of changes in risk factors during pioglitazone treatment.
Pioglitazone slowed progression of CIMT, independent of improvement in hyperglycemia, insulin resistance, dyslipidemia and systemic inflammation in prediabetes. These results suggest a possible direct vascular benefit of pioglitazone.
PMCID: PMC3908828  PMID: 23175674
Carotid atherosclerosis progression; Impaired glucose tolerance; Insulin resistance; Inflammation; Pioglitazone
5.  Actos Now for the prevention of diabetes (ACT NOW) study 
Impaired glucose tolerance (IGT) is a prediabetic state. If IGT can be prevented from progressing to overt diabetes, hyperglycemia-related complications can be avoided. The purpose of the present study was to examine whether pioglitazone (ACTOS®) can prevent progression of IGT to type 2 diabetes mellitus (T2DM) in a prospective randomized, double blind, placebo controlled trial.
602 IGT subjects were identified with OGTT (2-hour plasma glucose = 140–199 mg/dl). In addition, IGT subjects were required to have FPG = 95–125 mg/dl and at least one other high risk characteristic. Prior to randomization all subjects had measurement of ankle-arm blood pressure, systolic/diastolic blood pressure, HbA1C, lipid profile and a subset had frequently sampled intravenous glucose tolerance test (FSIVGTT), DEXA, and ultrasound determination of carotid intima-media thickness (IMT). Following this, subjects were randomized to receive pioglitazone (45 mg/day) or placebo, and returned every 2–3 months for FPG determination and annually for OGTT. Repeat carotid IMT measurement was performed at 18 months and study end. Recruitment took place over 24 months, and subjects were followed for an additional 24 months. At study end (48 months) or at time of diagnosis of diabetes the OGTT, FSIVGTT, DEXA, carotid IMT, and all other measurements were repeated.
Primary endpoint is conversion of IGT to T2DM based upon FPG ≥ 126 or 2-hour PG ≥ 200 mg/dl. Secondary endpoints include whether pioglitazone can: (i) improve glycemic control (ii) enhance insulin sensitivity, (iii) augment beta cell function, (iv) improve risk factors for cardiovascular disease, (v) cause regression/slow progression of carotid IMT, (vi) revert newly diagnosed diabetes to normal glucose tolerance.
ACT NOW is designed to determine if pioglitazone can prevent/delay progression to diabetes in high risk IGT subjects, and to define the mechanisms (improved insulin sensitivity and/or enhanced beta cell function) via which pioglitazone exerts its beneficial effect on glucose metabolism to prevent/delay onset of T2DM.
Trial Registration
clinical identifier: NCT00220961
PMCID: PMC2725044  PMID: 19640291

Results 1-5 (5)