PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  IMPACT OF OBESITY SEVERITY AND DURATION ON PANCREATIC β-AND α-CELLS DYNAMICS IN NORMOGLYCEMIC NON-HUMAN PRIMATES 
Objective
Obesity is associated to high insulin and glucagon plasma levels. Enhanced β–cell function and β–cell expansion are responsible for insulin hypersecretion. It is unknown whether hyperglucagonemia is due to α-cell hypersecretion or to an increase in α-cell mass. In this study, we investigated the dynamics of the β-cell and α-cell function and mass in pancreas of obese normoglycemic baboons.
Methods
Pancreatic β- and α-cell volumes were measured in 51 normoglycemic baboons divided into 6 groups according to overweight severity or duration. Islets morphometric parameters were correlated to overweight and to diverse metabolic and laboratory parameters.
Results
Relative α-cell volume (RαV) and relative islet α-cell volume (RIαV) increased significantly with both overweight duration and severity. Conversely, in spite of the induction of insulin resistance, overweight produced only modest effects on relative β-cell volume (RβV) and relative islet β-cell volume (RIβV). Of note, RIβV did not increase neither with overweight duration nor with overweight severity, supposedly because of the concomitant, greater, increase in RIαV. Baboons' body weights correlated with serum levels of Interleukin-6 and Tumour Necrosis Factor-α soluble Receptors (IL-6sR and sTNF-R1), demonstrating that overweight induces abnormal activation of the signaling of two cytokines known to impact differently β- and α-cell viability and replication.
Conclusion
In conclusion, overweight and insulin resistance induce in baboons a significant increase in α-cell volumes (RαV, RIαV) while have minimal effects on the β-cells. This study suggests that an increase in the α-cell mass may precede the loss of β-cells and the transition to overt hyperglycemia and diabetes.
doi:10.1038/ijo.2012.205
PMCID: PMC3906680  PMID: 23229736
Obesity duration; obesity severity; α-cell volume; β-cells volume; pancreatic islet remodelling; insulin resistance
2.  Coordinated Defects in Hepatic Long Chain Fatty Acid Metabolism and Triglyceride Accumulation Contribute to Insulin Resistance in Non-Human Primates 
PLoS ONE  2011;6(11):e27617.
Non-Alcoholic fatty liver disease (NAFLD) is characterized by accumulation of triglycerides (TG) in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.
Aims
To determine the TG content and long chain fatty acyl CoA composition profile in liver from obese non-diabetic insulin resistant (IR) and lean insulin sensitive (IS) baboons in relation with hepatic and peripheral insulin sensitivity.
Methods
Twenty baboons with varying grades of adiposity were studied. Hepatic (liver) and peripheral (mainly muscle) insulin sensitivity was measured with a euglycemic clamp and QUICKI. Liver biopsies were performed at baseline for TG content and LCFA profile by mass spectrometry, and histological analysis. Findings were correlated with clinical and biochemical markers of adiposity and insulin resistance.
Results
Obese IR baboons had elevated liver TG content compared to IS. Furthermore, the concentration of unsaturated (LC-UFA) was greater than saturated (LC-SFA) fatty acyl CoA in the liver. Interestingly, LC-FA UFA and SFA correlated with waist, BMI, insulin, NEFA, TG, QUICKI, but not M/I. Histological findings of NAFLD ranging from focal to diffuse hepatic steatosis were found in obese IR baboons.
Conclusion
Liver TG content is closely related with both hepatic and peripheral IR, whereas liver LC-UFA and LC-SFA are closely related only with hepatic IR in non-human primates. Mechanisms leading to the accumulation of TG, LC-UFA and an altered UFA: LC-SFA ratio may play an important role in the pathophysiology of fatty liver disease in humans.
doi:10.1371/journal.pone.0027617
PMCID: PMC3220682  PMID: 22125617

Results 1-2 (2)