PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Linkage of Type 2 Diabetes on Chromosome 9p24 in Mexican Americans: Additional Evidence from the Veterans Administration Genetic Epidemiology Study (VAGES) 
Human heredity  2013;76(1):36-46.
Objective
Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage analysis to localize T2DM susceptibility loci in Mexican Americans.
Methods
We used the phenotypic and genotypic data from 1,122 Mexican American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). Genome-wide linkage analysis was performed, using the variance components approach. Data from two additional Mexican American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence.
Results
After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, P = 2.7 × 10−6). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region in SAFDGS also, we found the significant and increased linkage evidence (LOD = 4.3, empirical P = 1.0 × 10−5, genome-wide P = 1.6 × 10−3) for T2DM at the same chromosomal region when we performed genome-wide linkage analysis of the VAGES data combined with SAFHS and SAFDGS data.
Conclusion
Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies (GWASs) involving T2DM related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes.
doi:10.1159/000354849
PMCID: PMC3919448  PMID: 24060607
Type 2 diabetes; Linkage; Chromosome 9p24; Mexican Americans; VAGES
2.  Genetic epidemiology of cardiometabolic risk ractors and their clustering patterns in Mexican American children and adolescents: The SAFARI Study 
Human genetics  2013;132(9):10.1007/s00439-013-1315-2.
Pediatric metabolic syndrome (MS) and its cardiometabolic components (MSCs) have become increasingly prevalent, yet little is known about the genetics underlying MS risk in children. We examined the prevalence and genetics of MS-related traits among 670 non-diabetic Mexican American (MA) children and adolescents, aged 6–17 years (49 % female), who were participants in the San Antonio Family Assessment of Metabolic Risk Indicators in Youth (SAFARI) study. These children are offspring or biological relatives of adult participants from three well-established Mexican American family studies in San Antonio, Texas, at increased risk of type 2 diabetes. MS was defined as ≥ 3 abnormalities among 6 MSC measures: waist circumference, systolic and/or diastolic blood pressure, fasting insulin, triglycerides, HDL-cholesterol, and fasting and/or 2-h OGTT glucose. Genetic analyses of MS, number of MSCs (MSC-N), MS factors, and bivariate MS traits were performed. Overweight/obesity (53 %), pre-diabetes (13 %), acanthosis nigricans (33 %), and MS (19 %) were strikingly prevalent, as were MS components, including abdominal adiposity (32 %) and low HDL-cholesterol (32 %). Factor analysis of MS traits yielded three constructs: adipo-insulin-lipid, blood pressure, and glucose factors, and their factor scores were highly heritable. MS itself exhibited 68 % heritability. MSC-N showed strong positive genetic correlations with obesity, insulin resistance, inflammation, and acanthosis nigricans, and negative genetic correlation with physical fitness. MS trait pairs exhibited strong genetic and/or environmental correlations. These findings highlight the complex genetic architecture of MS/MSCs in MA children, and underscore the need for early screening and intervention to prevent chronic sequelae in this vulnerable pediatric population.
doi:10.1007/s00439-013-1315-2
PMCID: PMC3845827  PMID: 23736306
3.  Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo 
This study was undertaken to test the hypothesis that short-term exposure (4 h) to physiological hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response independently of glycemic status. Twelve normal glucose tolerant subjects received a 4-h euglycemic hyperinsulinemic clamp with biopsies of the vastus lateralis muscle. Microarray analysis identified 121 probe sets that were significantly altered in response to physiological hyperinsulinemia while maintaining euglycemia. In normal, healthy human subjects insulin increased the mRNAs of a number of inflammatory genes (CCL2, CXCL2 and THBD) and transcription factors (ATF3, BHLHB2, HES1, KLF10, JUNB, FOS, and FOSB). A number of other genes were upregulated in response to insulin, including RRAD, MT, and SGK. CITED2, a known coactivator of PPARα, was significantly downregulated. SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to fasting plasma insulin concentrations. We independently validated the mRNA expression changes in an additional five subjects and closely paralleled the results observed in the original 12 subjects. A saline infusion in healthy, normal glucose-tolerant subjects without family history of diabetes demonstrated that the genes altered during the euglycemic hyperinsulinemic clamp were due to hyperinsulinemia and were unrelated to the biopsy procedure per se. The results of the present study demonstrate that insulin acutely regulates the levels of mRNAs involved in inflammation and transcription and identifies several candidate genes, including HES1 and BHLHB2, for further investigation.
doi:10.1152/ajpendo.00607.2007
PMCID: PMC3581328  PMID: 18334611
gene expression; muscle; insulin action; euglycemic hyperinsulinemic clamp; inflammation
4.  Genome-Wide Linkage Screen for Systolic Blood Pressure in the Veterans Administration Genetic Epidemiology Study (VAGES) of Mexican-Americans and Confirmation of a Major Susceptibility Locus on Chromosome 6q14.1 
Human Heredity  2011;71(1):1-10.
Objective
Hypertension or high blood pressure is a strong correlate of diseases such as obesity and type 2 diabetes. We conducted a genome-wide linkage screen to identify susceptibility genes influencing systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Mexican-Americans from the Veterans Administration Genetic Epidemiology Study (VAGES).
Methods
Using data from 1,089 individuals distributed across 266 families, we performed a multipoint linkage analysis to localize susceptibility loci for SBP and DBP by applying two models. In model 1, we added a sensible constant to the observed BP values in treated subjects [Tobin et al.; Stat Med 2005;24:2911–2935] to account for antihypertensive use (i.e. 15 and 10 mm Hg to SBP and DBP values, respectively). In model 2, we fixed values of 140 mm Hg for SBP and 90 mm Hg for DBP, if the treated values were less than the standard referenced treatment thresholds of 140/90 mm Hg for hypertensive status. However, if the observed treated BP values were found to be above these standard treatment thresholds, the actual observed treated BP values were retained in order not to reduce them by substitution of the treatment threshold values.
Results
The multipoint linkage analysis revealed strong linkage signals for SBP compared with DBP. The strongest evidence for linkage of SBP (model 1, LOD = 5.0; model 2, LOD = 3.6) was found on chromosome 6q14.1 near the marker D6S1031 (89 cM) in both models. In addition, some evidence for SBP linkage occurred on chromosomes 1q, 4p, and 16p. Most importantly, our major SBP linkage finding on chromosome 6q near marker D6S1031 was independently confirmed in a Caucasian population (LOD = 3.3). In summary, our study found evidence for a major locus on chromosome 6q influencing SBP levels in Mexican-Americans.
doi:10.1159/000323143
PMCID: PMC3152483  PMID: 21293138
Hypertension; Linkage; Antihypertensive medication; Genetic location; Heritability
5.  Proteomics Reveals Novel Oxidative and Glycolytic Mechanisms in Type 1 Diabetic Patients' Skin Which Are Normalized by Kidney-Pancreas Transplantation 
PLoS ONE  2010;5(3):e9923.
Background
In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular disease is increased several fold.
Methods and Findings
We evaluated protein regulation and expression in skin biopsies obtained from T1D patients with and without ESRD, to identify pathways of persistent cellular changes linked to diabetic vascular disease. We therefore examined pathways that may be normalized by restoration of normoglycemia with kidney-pancreas (KP) transplantation. Using proteomic and ultrastructural approaches, multiple alterations in the expression of proteins involved in oxidative stress (catalase, superoxide dismutase 1, Hsp27, Hsp60, ATP synthase δ chain, and flavin reductase), aerobic and anaerobic glycolysis (ACBP, pyruvate kinase muscle isozyme, and phosphoglycerate kinase 1), and intracellular signaling (stratifin-14-3-3, S100-calcyclin, cathepsin, and PPI rotamase) as well as endothelial vascular abnormalities were identified in T1D and T1D+ESRD patients. These abnormalities were reversed after KP transplant. Increased plasma levels of malondialdehyde were observed in T1D and T1D+ESRD patients, confirming increased oxidative stress which was normalized after KP transplant.
Conclusions
Our data suggests persistent cellular changes of anti-oxidative machinery and of aerobic/anaerobic glycolysis are present in T1D and T1D+ESRD patients, and these abnormalities may play a key role in the pathogenesis of hyperglycemia-related vascular complications. Restoration of normoglycemia and removal of uremia with KP transplant can correct these abnormalities. Some of these identified pathways may become potential therapeutic targets for a new generation of drugs.
doi:10.1371/journal.pone.0009923
PMCID: PMC2848014  PMID: 20360867
6.  Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects With Type 2 Diabetes 
Diabetes  2007;56(3):836-848.
Activation of AMP-activated protein kinase (AMPK) by exercise induces several cellular processes in muscle. Exercise activation of AMPK is unaffected in lean (BMI ~25 kg/m2) subjects with type 2 diabetes. However, most type 2 diabetic subjects are obese (BMI >30 kg/m2), and exercise stimulation of AMPK is blunted in obese rodents. We examined whether obese type 2 diabetic subjects have impaired exercise stimulation of AMPK, at different signaling levels, spanning from the upstream kinase, LKB1, to the putative AMPK targets, AS160 and peroxisome proliferator–activated receptor coactivator (PGC)-1α, involved in glucose transport regulation and mitochondrial biogenesis, respectively. Twelve type 2 diabetic, eight obese, and eight lean subjects exercised on a cycle ergometer for 40 min. Muscle biopsies were done before, during, and after exercise. Subjects underwent this protocol on two occasions, at low (50% VO2max) and moderate (70% VO2max) intensities, with a 4–6 week interval. Exercise had no effect on LKB1 activity. Exercise had a time- and intensity-dependent effect to increase AMPK activity and AS160 phosphorylation. Obese and type 2 diabetic subjects had attenuated exercise-stimulated AMPK activity and AS160 phosphorylation. Type 2 diabetic subjects had reduced basal PGC-1 gene expression but normal exercise-induced increases in PGC-1 expression. Our findings suggest that obese type 2 diabetic subjects may need to exercise at higher intensity to stimulate the AMPK-AS160 axis to the same level as lean subjects.
doi:10.2337/db06-1119
PMCID: PMC2844111  PMID: 17327455
7.  Genome-Wide Linkage Scan for Genes Influencing Plasma Triglyceride Levels in the Veterans Administration Genetic Epidemiology Study 
Diabetes  2009;58(1):279-284.
OBJECTIVE—Elevated plasma triglyceride concentration is a component of the insulin resistance syndrome and is commonly associated with type 2 diabetes, obesity, and coronary heart disease. The goal of our study was to perform a genome-wide linkage scan to identify genetic regions that influence variation in plasma triglyceride levels in families that are enriched with individuals with type 2 diabetes.
RESEARCH DESIGN AND METHODS—We used phenotypic and genotypic data from 1,026 individuals distributed across 294 Mexican-American families, who were ascertained for type 2 diabetes, from the Veterans Administration Genetic Epidemiology Study (VAGES). Plasma triglyceride values were transformed, and a variance-components technique was used to conduct multipoint linkage analysis.
RESULTS—After adjusting for the significant effects of sex and BMI, heritability for plasma triglycerides was estimated as 46 ± 7% (P < 0.0001). Multipoint linkage analysis yielded the strongest evidence for linkage of plasma triglycerides near marker D12S391 on chromosome 12p (logarithm of odds [LOD] = 2.4). Our linkage signal on chromosome 12p provides independent replication of a similar finding in another Mexican-American sample from the San Antonio Family Diabetes Study (SAFDS). Combined multipoint linkage analysis of the VAGES and SAFDS data yielded significant evidence for linkage of plasma triglycerides to a genetic location between markers GATA49D12 and D12S391 on 12p (LOD = 3.8, empirical P value = 2.0 × 10−5). This region on 12p harbors the gene-encoding adiponectin receptor 2 (AdipoR2), where we previously have shown that multiple single nucleotide polymorphisms are associated with plasma triglyceride concentrations in the SAFDS. In the present study, we provided suggestive evidence in favor of association for rs929434 with triglyceride concentrations in the VAGES.
CONCLUSIONS—Collectively, these results provide strong evidence for a major locus on chromosome 12p that influences plasma triglyceride levels in Mexican Americans.
doi:10.2337/db08-0491
PMCID: PMC2606886  PMID: 18931038
8.  Effects of covariates and interactions on a genome-wide association analysis of rheumatoid arthritis 
BMC Proceedings  2009;3(Suppl 7):S84.
While genetic and environmental factors and their interactions influence susceptibility to rheumatoid arthritis (RA), causative genetic variants have not been identified. The purpose of the present study was to assess the effects of covariates and genotype × sex interactions on the genome-wide association analysis (GWAA) of RA using Genetic Analysis Workshop 16 Problem 1 data and a logistic regression approach as implemented in PLINK. After accounting for the effects of population stratification, effects of covariates and genotype × sex interactions on the GWAA of RA were assessed by conducting association and interaction analyses. We found significant allelic associations, covariate, and genotype × sex interaction effects on RA. Several top single-nucleotide polymorphisms (SNPs) (~22 SNPs) showed significant associations with strong p-values (p < 1 × 10-4 - p < 1 × 10-24). Only three SNPs on chromosomes 4, 13, and 20 were significant after Bonferroni correction, and none of these three SNPs showed significant genotype × sex interactions. Of the 30 top SNPs with significant (p < 1 × 10-4 - p < 1 × 10-6) interactions, ~23 SNPs showed additive interactions and ~5 SNPs showed only dominance interactions. Those SNPs showing significant associations in the regular logistic regression failed to show significant interactions. In contrast, the SNPs that showed significant interactions failed to show significant associations in models that did not incorporate interactions. It is important to consider interactions of genotype × sex in addition to associations in a GWAA of RA. Furthermore, the association between SNPs and RA susceptibility varies significantly between men and women.
PMCID: PMC2795987  PMID: 20018080
9.  Global Relationship between the Proteome and Transcriptome of Human Skeletal Muscle 
Journal of proteome research  2008;7(8):3230-3241.
Skeletal muscle is one of the largest tissues in the human body. Changes in mRNA and protein abundance in this tissue are central to a large number of metabolic and other disorders, including, commonly, insulin resistance. Proteomic and microarray analyses are important approaches for gaining insight into the molecular and biochemical basis for normal and pathophysiological conditions. With the use of vastus lateralis muscle obtained from two groups of healthy, nonobese subjects, we performed a detailed comparison of the muscle proteome, obtained by HPLC-ESI-MS/MS, with the muscle transcriptome, obtained using oligonucleotide microarrays. HPLC-ESI-MS/MS analysis identified 507 unique proteins as present in four out of six subjects, while 5193 distinct transcripts were called present by oligonucleotide microarrays from four out of six subjects. The majority of the proteins identified by mass spectrometry also had their corresponding transcripts detected by microarray analysis, although 73 proteins were only identified in the proteomic analysis. Reflecting the high abundance of mitochondria in skeletal muscle, 30% of proteins detected were attributed to the mitochondrion, as compared to only 9% of transcripts. On the basis of Gene Ontology annotations, proteins assigned to mitochondrial inner membrane, mitochondrial envelope, structural molecule activity, electron transport, as well as generation of precursor metabolites and energy, had more corresponding transcripts detected than would be expected by chance. On the contrary, proteins assigned to Golgi apparatus, extracellular region, lyase activity, kinase activity, and protein modification process had fewer corresponding transcripts detected than would be expected by chance. In conclusion, these results provide the first global comparison of the human skeletal muscle proteome and transcriptome to date. These data show that a combination of proteomic and transcriptic analyses will provide data that can be used to test hypotheses regarding the pathogenesis of muscle disorders as well as to generate observational data that can be used to form novel hypotheses.
doi:10.1021/pr800064s
PMCID: PMC2755516  PMID: 18613714
human skeletal muscle; proteomic analysis; HPLC-ESI-MS/MS; microarrays; transcriptome; tissue profiling; Gene Ontology
10.  Elevated Toll-Like Receptor 4 Expression and Signaling in Muscle From Insulin-Resistant Subjects 
Diabetes  2008;57(10):2595-2602.
OBJECTIVE— Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of κB (IκB)/nuclear factor κB (NFκB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IκB/NFκB) signaling in skeletal muscle.
RESEARCH DESIGN AND METHODS— TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IκB/NFκB via TLR4 and whether FFAs increase TLR4 expression/content in muscle.
RESULTS— Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IκBα content, an indication of elevated IκB/NFκB signaling. The increase in TLR4 and NFκB signaling was accompanied by elevated expression of the NFκB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IκB/NFκB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IκB/NFκB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFκB.
CONCLUSIONS— Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.
doi:10.2337/db08-0038
PMCID: PMC2551667  PMID: 18633101
11.  Effect of genotype × alcoholism interaction on linkage analysis of an alcoholism-related quantitative phenotype 
BMC Genetics  2005;6(Suppl 1):S120.
Studies have shown that genetic and environmental factors and their interactions affect several alcoholism phenotypes. Genotype × alcoholism (G×A) interaction refers to the environmental (alcoholic and non-alcoholic) influences on the autosomal genes contributing to variation in an alcoholism-related quantitative phenotype. The purpose of this study was to examine the effects of G×A interaction on the detection of linkage for alcoholism-related phenotypes.
We used phenotypic and genotypic data from the Collaborative Study on the Genetics of Alcoholism relating to 1,388 subjects as part of Genetic Analysis Workshop 14 problem 1. We analyzed the MXDRNK phenotype to detect G×A interaction using SOLAR. Upon detecting significant interaction, we conducted variance-component linkage analyses using microsatellite marker data. For maximum number of drinks per a 24 hour period, the highest LODs were observed on chromosomes 1, 4, and 13 without G×A interaction. Interaction analysis yielded four regions on chromosomes 1, 4, 13, and 15. On chromosome 4, a maximum LOD of 1.5 at the same location as the initial analysis was obtained after incorporating G×A interaction effects. However, after correcting for extra parameters, the LOD score was reduced to a corrected LOD of 1.1, which is similar to the LOD observed in the non-interaction analysis. Thus, we see little differences in LOD scores, while some linkage regions showed large differences in the magnitudes of estimated quantitative trait loci heritabilities between the alcoholic and non-alcoholic groups. These potential hints of differences in genetic effect may influence future analyses of variants under these linkage peaks.
doi:10.1186/1471-2156-6-S1-S120
PMCID: PMC1866817  PMID: 16451578

Results 1-11 (11)