PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release 
The Journal of Experimental Medicine  2012;209(9):1519-1528.
HMGB1 orchestrates leukocyte recruitment and their induction to secrete inflammatory cytokines by switching between mutually exclusive redox states.
Tissue damage causes inflammation, by recruiting leukocytes and activating them to release proinflammatory mediators. We show that high-mobility group box 1 protein (HMGB1) orchestrates both processes by switching among mutually exclusive redox states. Reduced cysteines make HMGB1 a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation to sulfonates by reactive oxygen species abrogates both activities. We show that leukocyte recruitment and activation can be separated. A nonoxidizable HMGB1 mutant in which serines replace all cysteines (3S-HMGB1) does not promote cytokine production, but is more effective than wild-type HMGB1 in recruiting leukocytes in vivo. BoxA, a HMGB1 inhibitor, interferes with leukocyte recruitment but not with activation. We detected the different redox forms of HMGB1 ex vivo within injured muscle. HMGB1 is completely reduced at first and disulfide-bonded later. Thus, HMGB1 orchestrates both key events in sterile inflammation, leukocyte recruitment and their induction to secrete inflammatory cytokines, by adopting mutually exclusive redox states.
doi:10.1084/jem.20120189
PMCID: PMC3428943  PMID: 22869893
2.  Proteins from Tuber magnatum Pico fruiting bodies naturally grown in different areas of Italy 
Proteome Science  2013;11:7.
Background
A number of Tuber species are ecologically important. The fruiting bodies of some of these also have value as a cooking ingredient due to the fact that they possess exceptional flavor and aromatic properties. In particular, T. magnatum fruiting bodies (commonly known as truffles), are greatly appreciated by consumers. These grow naturally in some parts of Italy. However, the quality of these fruiting bodies varies significantly depending on the area of origin due to differences in environmental growth conditions. It is therefore useful to be able to characterize them. A suitable method to reach this goal is to identify proteins which occur in the fruiting bodies that are specific to each area of origin. In this work protein profiles are described for samples coming from different areas and collected in two successive years. To our knowledge this is the first time that proteins of T. magnatum have been thoroughly examined.
Results
Using two dimensional electrophoresis, reproducible quantitative differences in the protein patterns (total 600 spots) of samples from different parts of Italy (accession areas) were revealed by bioinformatic analysis. 60 spots were chosen for further analysis, out of which 17 could probably be used to distinguish a sample grown in one area from a sample grown in another area. Mass spectrometry (MS) protein analysis of these seventeen spots allowed the identification of 17 proteins of T. magnatum.
Conclusions
The results indicate that proteomic analysis is a suitable method for characterizing those differences occurring in samples and induced by the different environmental conditions present in the various Italian areas where T. magnatum can grow. The positive protein identification by MS analysis has proved that this method can be applied with success even in a species whose genome, at the moment, has not been sequenced.
doi:10.1186/1477-5956-11-7
PMCID: PMC3608153  PMID: 23375047
Tuber magnatum; Proteins; Fruiting bodies; 2D-electrophoresis; Mass spectrometry; qPCR
3.  Attenuation of miR-126 Activity Expands HSC In Vivo without Exhaustion 
Cell Stem Cell  2012;11(6):799-811.
Summary
Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks, making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell-cycle entry, leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway, attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function.
Graphical Abstract
Highlights
► miR-126 is a novel regulator of the HSC quiescence/proliferation equilibrium ► Reduction in miR-126 induces an expansion of long-term HSC without exhaustion ► Constitutive miR-126 expression promotes HSC quiescence and progenitor proliferation ► miR-126 attenuates PI3K/AKT activation in response to cytokine stimulation
miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway to promote HSC quiescence and progenitor proliferation.
doi:10.1016/j.stem.2012.09.001
PMCID: PMC3517970  PMID: 23142521
4.  Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew 
Journal of Experimental Botany  2012;63(17):6237-6251.
Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome.
doi:10.1093/jxb/ers279
PMCID: PMC3481215  PMID: 23105132
biocontrol agent; induced resistance; Plasmopara viticola; quantitative proteomics; reactive oxygen species; tripartite interaction; Vitis vinifera
5.  AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome 
Nucleic Acids Research  2012;40(22):11756-11768.
Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-PHD fingers are important for AIRE transcriptional activity and presumably play a crucial role in the formation of multimeric protein complexes at chromatin level which ultimately control immunological tolerance. As a step forward the understanding of AIRE-PHD fingers in normal and pathological conditions, we investigated their structure and used a proteomic SILAC approach to assess the impact of patient mutations targeting AIRE-PHD fingers. Importantly, both AIRE-PHD fingers are structurally independent and mutually non-interacting domains. In contrast to D297A and V301M on AIRE-PHD1, the C446G mutation on AIRE-PHD2 destroys the structural fold, thus causing aberrant AIRE localization and reduction of AIRE target genes activation. Moreover, mutations targeting AIRE-PHD1 affect the formation of a multimeric protein complex at chromatin level. Overall our results reveal the importance of AIRE-PHD domains in the interaction with chromatin-associated nuclear partners and gene regulation confirming the role of PHD fingers as versatile protein interaction hubs for multiple binding events.
doi:10.1093/nar/gks933
PMCID: PMC3526288  PMID: 23074189
6.  HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4 
CXCL12 forms a complex with HMGB1 that binds to the chemokine receptor CXCR4 and increases inflammatory cell migration.
After tissue damage, inflammatory cells infiltrate the tissue and release proinflammatory cytokines. HMGB1 (high mobility group box 1), a nuclear protein released by necrotic and severely stressed cells, promotes cytokine release via its interaction with the TLR4 (Toll-like receptor 4) receptor and cell migration via an unknown mechanism. We show that HMGB1-induced recruitment of inflammatory cells depends on CXCL12. HMGB1 and CXCL12 form a heterocomplex, which we characterized by nuclear magnetic resonance and surface plasmon resonance, that acts exclusively through CXCR4 and not through other HMGB1 receptors. Fluorescence resonance energy transfer data show that the HMGB1–CXCL12 heterocomplex promotes different conformational rearrangements of CXCR4 from that of CXCL12 alone. Mononuclear cell recruitment in vivo into air pouches and injured muscles depends on the heterocomplex and is inhibited by AMD3100 and glycyrrhizin. Thus, inflammatory cell recruitment and activation both depend on HMGB1 via different mechanisms.
doi:10.1084/jem.20111739
PMCID: PMC3302219  PMID: 22370717
7.  TACE (ADAM17) inhibits Schwann cell myelination 
Nature Neuroscience  2011;14(7):857-865.
Tumor necrosis factor-α–converting enzyme (TACE; also known as ADAM17) is a proteolytic sheddase that is responsible for the cleavage of several membrane-bound molecules. We report that TACE cleaves neuregulin-1 (NRG1) type III in the epidermal growth factor domain, probably inactivating it (as assessed by deficient activation of the phosphatidylinositol-3-OH kinase pathway), and thereby negatively regulating peripheral nervous system (PNS) myelination. Lentivirus-mediated knockdown of TACE in vitro in dorsal root ganglia neurons accelerates the onset of myelination and results in hypermyelination. In agreement, motor neurons of conditional knockout mice lacking TACE specifically in these cells are significantly hypermyelinated, and small-caliber fibers are aberrantly myelinated. Further, reduced TACE activity rescues hypomyelination in NRG1 type III haploinsufficient mice in vivo. We also show that the inhibitory effect of TACE is neuron-autonomous, as Schwann cells lacking TACE elaborate myelin of normal thickness. Thus, TACE is a modulator of NRG1 type III activity and is a negative regulator of myelination in the PNS.
doi:10.1038/nn.2849
PMCID: PMC3291894  PMID: 21666671
8.  Biochemical and Functional Characterization of the Interaction between Liprin-α1 and GIT1: Implications for the Regulation of Cell Motility 
PLoS ONE  2011;6(6):e20757.
We have previously identified the scaffold protein liprin-α1 as an important regulator of integrin-mediated cell motility and tumor cell invasion. Liprin-α1 may interact with different proteins, and the functional significance of these interactions in the regulation of cell motility is poorly known. Here we have addressed the involvement of the liprin-α1 partner GIT1 in liprin-α1-mediated effects on cell spreading and migration. GIT1 depletion inhibited spreading by affecting the lamellipodia, and prevented liprin-α1-enhanced spreading. Conversely inhibition of the formation of the liprin-α1-GIT complex by expression of liprin-ΔCC3 could still enhance spreading, although to a lesser extent compared to full length liprin-α1. No cumulative effects were observed after depletion of both liprin-α1 and GIT1, suggesting that the two proteins belong to the same signaling network in the regulation of cell spreading. Our data suggest that liprin-α1 may compete with paxillin for binding to GIT1, while binding of βPIX to GIT1 was unaffected by the presence of liprin-α1. Interestingly, GIT and liprin-α1 reciprocally regulated their subcellular localization, since liprin-α1 overexpression, but not the GIT binding-defective liprin-ΔCC3 mutant, affected the localization of endogenous GIT at peripheral and mature central focal adhesions, while the expression of a truncated, active form of GIT1 enhanced the localization of endogenous liprin-α1 at the edge of spreading cells. Moreover, GIT1 was required for liprin-α1-enhanced haptotatic migration, although the direct interaction between liprin-α1 and GIT1 was not needed. Our findings show that the functional interaction between liprin-α1 and GIT1 cooperate in the regulation of integrin-dependent cell spreading and motility on extracellular matrix. These findings and the possible competition of liprin-α1 with paxillin for binding to GIT1 suggest that alternative binding of GIT1 to either liprin-α1 or paxillin plays distinct roles in different phases of the protrusive activity in the cell.
doi:10.1371/journal.pone.0020757
PMCID: PMC3113849  PMID: 21695141
9.  Secretion of Novel SEL1L Endogenous Variants Is Promoted by ER Stress/UPR via Endosomes and Shed Vesicles in Human Cancer Cells 
PLoS ONE  2011;6(2):e17206.
We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer.
doi:10.1371/journal.pone.0017206
PMCID: PMC3040770  PMID: 21359144
10.  Engineering of Lactobacillus jensenii To Secrete RANTES and a CCR5 Antagonist Analogue as Live HIV-1 Blockers▿  
The development of effective microbicides for the prevention of HIV-1 sexual transmission represents a primary goal for the control of AIDS epidemics worldwide. A promising strategy is the use of bacteria belonging to the vaginal microbiota as live microbicides for the topical production of HIV-1 inhibitors. We have engineered a human vaginal isolate of Lactobacillus jensenii to secrete the anti-HIV-1 chemokine RANTES, as well as C1C5 RANTES, a mutated analogue that acts as a CCR5 antagonist and therefore is devoid of proinflammatory activity. Full-length wild-type RANTES and C1C5 RANTES secreted by L. jensenii were purified to homogeneity and shown to adopt a correctly folded conformation. Both RANTES variants were shown to inhibit HIV-1 infection in CD4+ T cells and macrophages, displaying strong activity against HIV-1 isolates of different genetic subtypes. This work provides proof of principle for the use of L. jensenii-produced C1C5 RANTES to block HIV-1 infection of CD4+ T cells and macrophages, setting the basis for the development of a live anti-HIV-1 microbicide targeting CCR5 in an antagonistic manner.
doi:10.1128/AAC.01492-09
PMCID: PMC2897324  PMID: 20479208
11.  Proline Isomerase Pin1 Represses Terminal Differentiation and Myocyte Enhancer Factor 2C Function in Skeletal Muscle Cells* 
The Journal of Biological Chemistry  2010;285(45):34518-34527.
Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation. With the aim of clarifying the mechanism of Pin1 function in skeletal myogenesis, we investigated whether MEF2C, a critical regulator of the myogenic program that is the end point of several signaling pathways, might serve as a/the target for the inhibitory effects of Pin1 on muscle differentiation. We show that Pin1 interacts selectively with phosphorylated MEF2C in skeletal muscle cells, both in vitro and in vivo. The interaction with Pin1 requires two novel critical phospho-Ser/Thr-Pro motifs in MEF2C, Ser98 and Ser110, which are phosphorylated in vivo. Overexpression of Pin1 decreases MEF2C stability and activity and its ability to cooperate with MyoD to activate myogenic conversion. Collectively, these findings reveal a novel role for Pin1 as a regulator of muscle terminal differentiation and suggest that Pin1-mediated repression of MEF2C function could contribute to this function.
doi:10.1074/jbc.M110.104133
PMCID: PMC2966067  PMID: 20801874
Differentiation; Mass Spectrometry (MS); Protein Isomerase; Protein Phosphorylation; Protein Stability; Protein Translocation; Transcription Factors; MEF2; Pin1; Muscle
12.  Proteomics Reveals Novel Oxidative and Glycolytic Mechanisms in Type 1 Diabetic Patients' Skin Which Are Normalized by Kidney-Pancreas Transplantation 
PLoS ONE  2010;5(3):e9923.
Background
In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular disease is increased several fold.
Methods and Findings
We evaluated protein regulation and expression in skin biopsies obtained from T1D patients with and without ESRD, to identify pathways of persistent cellular changes linked to diabetic vascular disease. We therefore examined pathways that may be normalized by restoration of normoglycemia with kidney-pancreas (KP) transplantation. Using proteomic and ultrastructural approaches, multiple alterations in the expression of proteins involved in oxidative stress (catalase, superoxide dismutase 1, Hsp27, Hsp60, ATP synthase δ chain, and flavin reductase), aerobic and anaerobic glycolysis (ACBP, pyruvate kinase muscle isozyme, and phosphoglycerate kinase 1), and intracellular signaling (stratifin-14-3-3, S100-calcyclin, cathepsin, and PPI rotamase) as well as endothelial vascular abnormalities were identified in T1D and T1D+ESRD patients. These abnormalities were reversed after KP transplant. Increased plasma levels of malondialdehyde were observed in T1D and T1D+ESRD patients, confirming increased oxidative stress which was normalized after KP transplant.
Conclusions
Our data suggests persistent cellular changes of anti-oxidative machinery and of aerobic/anaerobic glycolysis are present in T1D and T1D+ESRD patients, and these abnormalities may play a key role in the pathogenesis of hyperglycemia-related vascular complications. Restoration of normoglycemia and removal of uremia with KP transplant can correct these abnormalities. Some of these identified pathways may become potential therapeutic targets for a new generation of drugs.
doi:10.1371/journal.pone.0009923
PMCID: PMC2848014  PMID: 20360867
14.  Prion Protein Paralog Doppel Protein Interacts with Alpha-2-Macroglobulin: A Plausible Mechanism for Doppel-Mediated Neurodegeneration 
PLoS ONE  2009;4(6):e5968.
Doppel protein (Dpl) is a paralog of the cellular form of the prion protein (PrPC), together sharing common structural and biochemical properties. Unlike PrPC, which is abundantly expressed throughout the central nervous system (CNS), Dpl protein expression is not detectable in the CNS. Interestingly, its ectopic expression in the brain elicits neurodegeneration in transgenic mice. Here, by combining native isoelectric focusing plus non-denaturing polyacrylamide gel electrophoresis and mass spectrometry analysis, we identified two Dpl binding partners: rat alpha-1-inhibitor-3 (α1I3) and, by sequence homology, alpha-2-macroglobulin (α2M), two known plasma metalloproteinase inhibitors. Biochemical investigations excluded the direct interaction of PrPC with either α1I3 or α2M. Nevertheless, enzyme-linked immunosorbent assays and surface plasmon resonance experiments revealed a high affinity binding occurring between PrPC and Dpl. In light of these findings, we suggest a mechanism for Dpl-induced neurodegeneration in mice expressing Dpl ectopically in the brain, linked to a withdrawal of natural inhibitors of metalloproteinase such as α2M. Interestingly, α2M has been proven to be a susceptibility factor in Alzheimer's disease, and as our findings imply, it may also play a relevant role in other neurodegenerative disorders, including prion diseases.
doi:10.1371/journal.pone.0005968
PMCID: PMC2693666  PMID: 19536284
15.  Protein fingerprints of cultured CA3-CA1 hippocampal neurons: comparative analysis of the distribution of synaptosomal and cytosolic proteins 
BMC Neuroscience  2008;9:36.
Background
All studies aimed at understanding complex molecular changes occurring at synapses face the problem of how a complete view of the synaptic proteome and of its changes can be efficiently met. This is highly desirable when synaptic plasticity processes are analyzed since the structure and the biochemistry of neurons and synapses get completely reshaped. Because most molecular studies of synapses are nowadays mainly or at least in part based on protein extracts from neuronal cultures, this is not a feasible option: these simplified versions of the brain tissue on one hand provide an homogeneous pure population of neurons but on the other yield only tiny amounts of proteins, many orders of magnitude smaller than conventional brain tissue. As a way to overcome this limitation and to find a simple way to screen for protein changes at cultured synapses, we have produced and characterized two dimensional electrophoresis (2DE) maps of the synaptic proteome of CA3-CA1 hippocampal neurons in culture.
Results
To obtain 2D maps, hippocampal cultures were mass produced and after synaptic maturation, proteins were extracted following subfractionation procedures and separated by 2D gel electrophoresis. Similar maps were obtained for the crude cytosol of cultured neurons and for synaptosomes purified from CA3-CA1 hippocampal tissue. To efficiently compare these different maps some clearly identifiable reference points were molecularly identified by mass spectrometry and immunolabeling methods. This information was used to run a differential analysis and establish homologies and dissimilarities in these 2D protein profiles.
Conclusion
Because reproducible fingerprints of cultured synapses were clearly obtained, we believe that our mapping effort could represent a simple tool to screen for protein expression and/or protein localization changes in CA3-CA1 hippocampal neurons following plasticity.
doi:10.1186/1471-2202-9-36
PMCID: PMC2324106  PMID: 18402664
16.  p160 Myb-Binding Protein Interacts with Prep1 and Inhibits Its Transcriptional Activity▿ † 
Molecular and Cellular Biology  2007;27(22):7981-7990.
Prep1 is known to interact in vivo with Pbx1 to regulate development and organogenesis. We have identified a novel Prep1-interacting protein, p160 c-Myb binding protein (p160). p160 and Pbx1 compete for Prep1 in vitro, and p160 inhibits Prep1-dependent HoxB2 expression in retinoic acid-treated NT2-D1 cells. The N-terminal physiologically truncated form of p160, p67, binds the sequence 63LFPLL67 in the HR1 domain of Prep1. Mutation of both L63 and L66 impairs the binding of Prep1 to both p160/p67 and Pbx1. The sequences required to bind Prep1 are mainly located in residues 51 to 151. Immunofluorescence colocalization and coimmunoprecipitation of endogenous p160 and Prep1 are induced by ActD, which translocates p160 from the nucleolus to the nucleoplasm. These data therefore show that p160 is a novel regulator of Prep1-Pbx1 transcriptional activity.
doi:10.1128/MCB.01290-07
PMCID: PMC2169149  PMID: 17875935
17.  Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells 
Nucleic Acids Research  2007;36(3):915-928.
Myocyte enhancer factor 2 (MEF2) proteins play a key role in promoting the expression of muscle-specific genes in differentiated muscle cells. MEF2 activity is regulated by the association with several transcriptional co-factors and by post-translational modifications. In the present report, we provide evidence for a novel regulatory mechanism of MEF2C activity, which occurs at the onset of skeletal muscle differentiation and is based on Lys4 acetylation. This covalent modification results in the enhancement of MEF2C binding to DNA and chromatin. In particular, we report that the kinetic parameters of MEF2/DNA association change substantially upon induction of differentiation to give a more stable complex and that this effect is mediated by Lys4 acetylation. We also show that Lys4 acetylation plays a prominent role in the p300-dependent activation of MEF2C.
doi:10.1093/nar/gkm1114
PMCID: PMC2241889  PMID: 18086704
18.  HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses 
Journal of Clinical Investigation  2005;115(6):1644-1650.
We used a proteomic approach for identifying molecules involved in the pathogenesis of chronic lymphocytic leukemia (CLL). We investigated 14 patients who were completely concordant for IgVH mutational status (unmutated vs. mutated), CD38 expression (positive vs. negative), and clinical behavior (progressive vs. stable); these patients were characterized as having either poor or good prognoses. The 2 patient subsets differed in the expression of hematopoietic lineage cell-specific protein 1 (HS1). In patients with poor prognoses, most HS1 protein was constitutively phosphorylated, whereas only a fraction was phosphorylated in patients with good prognoses. This difference was investigated in a larger cohort of 26 unselected patients. The survival curve of all 40 patients analyzed revealed that patients with predominately phosphorylated HS1 experience a significantly shorter median survival time. As HS1 is a protein pivotal in the signal cascade triggered by B cell receptor (BCR) stimulation, we studied its pattern of expression following BCR engagement. Normal mature B cells stimulated by anti-IgM shifted the non- or less-phosphorylated form of HS1 toward the more phosphorylated form. Naive B cells showed both HS1 forms while memory B cells expressed mainly the phosphorylated fraction. These data indicate a central role for antigen stimulation in CLL and suggest a new therapeutic target for patients with aggressive disease.
doi:10.1172/JCI24276
PMCID: PMC1136999  PMID: 15931393
19.  Purified Box C/D snoRNPs Are Able To Reproduce Site-Specific 2′-O-Methylation of Target RNA In Vitro 
Molecular and Cellular Biology  2002;22(19):6663-6668.
Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2′-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D′ of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-l-methionine-binding region of Nop1p is responsible for the catalytic activity.
doi:10.1128/MCB.22.19.6663-6668.2002
PMCID: PMC134041  PMID: 12215523
20.  RanGTP-Regulated Interactions of CRM1 with Nucleoporins and a Shuttling DEAD-Box Helicase 
Molecular and Cellular Biology  1999;19(9):6276-6285.
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.
PMCID: PMC84588  PMID: 10454574

Results 1-20 (20)