Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Stem Cell Mobilization and Collection for Induction of Mixed Chimerism and Renal Allograft Tolerance in Cynomolgus Monkeys1 
The Journal of surgical research  2010;168(2):294-300.
We have previously observed that donor bone marrow hematopoietic stem cells successfully induce transient mixed chimerism and renal allograft tolerance following non-myeloablative conditioning of the recipient. Stem cells isolated from the peripheral blood (PBSC) may provide similar benefits. We sought to determine the most effective method of mobilizing PBSC for this approach and the effects of differing conditioning regimens on their engraftment.
A standard dose (10 μg/kg) or high dose (100 μg/kg) of granulocyte colony-stimulating factor (GCSF) with or without stem cell factor (SCF) was administered to the donor and PBSC were collected by leukapheresis. Cynomolgus monkey recipients underwent a nonmyeloablative conditioning regimen (total body irradiation, thymic irradiation and ATG) with splenectomy (splenectomy group) or a short course of anti-CD154 antibody (aCD154) (aCD154 group). Recipients then received combined kidney and PBSC transplantation and a one-month post transplant course of cyclosporine.
Treatments with either two cytokines (GCSF+SCF) or high dose GCSF provided significantly more hematopoietic progenitor cells than standard dose GCSF alone. Recipients in the aCD154 group developed significantly higher myeloid and lymphoid chimerism (p<0.0001 and p=0.0002, respectively) than those in the splenectomy group. Longer term renal allograft survival without immunosuppression was also observed in the aCD154 group, while two of three recipients in the splenectomy group rejected their allografts soon after discontinuation of immunosuppression.
Protocols including administration of two cytokines (GCSF + SCF) or high dose GCSF alone significantly mobilized more PBSC than standard dose GCSF alone. The recipients of PBSC consistently developed excellent chimerism and survived long-term without immunosuppression, when treated with CD154 blockade.
PMCID: PMC2952058  PMID: 20605588
kidney transplantation; nonhuman primates; tolerance; mixed chimerism; peripheral blood stem cell transplantation; leukapheresis
2.  Coordinated Defects in Hepatic Long Chain Fatty Acid Metabolism and Triglyceride Accumulation Contribute to Insulin Resistance in Non-Human Primates 
PLoS ONE  2011;6(11):e27617.
Non-Alcoholic fatty liver disease (NAFLD) is characterized by accumulation of triglycerides (TG) in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.
To determine the TG content and long chain fatty acyl CoA composition profile in liver from obese non-diabetic insulin resistant (IR) and lean insulin sensitive (IS) baboons in relation with hepatic and peripheral insulin sensitivity.
Twenty baboons with varying grades of adiposity were studied. Hepatic (liver) and peripheral (mainly muscle) insulin sensitivity was measured with a euglycemic clamp and QUICKI. Liver biopsies were performed at baseline for TG content and LCFA profile by mass spectrometry, and histological analysis. Findings were correlated with clinical and biochemical markers of adiposity and insulin resistance.
Obese IR baboons had elevated liver TG content compared to IS. Furthermore, the concentration of unsaturated (LC-UFA) was greater than saturated (LC-SFA) fatty acyl CoA in the liver. Interestingly, LC-FA UFA and SFA correlated with waist, BMI, insulin, NEFA, TG, QUICKI, but not M/I. Histological findings of NAFLD ranging from focal to diffuse hepatic steatosis were found in obese IR baboons.
Liver TG content is closely related with both hepatic and peripheral IR, whereas liver LC-UFA and LC-SFA are closely related only with hepatic IR in non-human primates. Mechanisms leading to the accumulation of TG, LC-UFA and an altered UFA: LC-SFA ratio may play an important role in the pathophysiology of fatty liver disease in humans.
PMCID: PMC3220682  PMID: 22125617

Results 1-2 (2)